Author: Shoshichi Kobayashi
Publisher: World Scientific
ISBN: 9812564969
Category : Mathematics
Languages : en
Pages : 161
Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.
Hyperbolic Manifolds and Holomorphic Mappings
Author: Shoshichi Kobayashi
Publisher: World Scientific
ISBN: 9812564969
Category : Mathematics
Languages : en
Pages : 161
Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.
Publisher: World Scientific
ISBN: 9812564969
Category : Mathematics
Languages : en
Pages : 161
Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.
Hyperbolic Manifolds And Holomorphic Mappings: An Introduction (Second Edition)
Author: Shoshichi Kobayashi
Publisher: World Scientific Publishing Company
ISBN: 9813101938
Category : Mathematics
Languages : en
Pages : 161
Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections “invariant metrics and pseudo-distances” and “hyperbolic complex manifolds” within the section “holomorphic mappings”. The invariant distance introduced in the first edition is now called the “Kobayashi distance”, and the hyperbolicity in the sense of this book is called the “Kobayashi hyperbolicity” to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.
Publisher: World Scientific Publishing Company
ISBN: 9813101938
Category : Mathematics
Languages : en
Pages : 161
Book Description
The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections “invariant metrics and pseudo-distances” and “hyperbolic complex manifolds” within the section “holomorphic mappings”. The invariant distance introduced in the first edition is now called the “Kobayashi distance”, and the hyperbolicity in the sense of this book is called the “Kobayashi hyperbolicity” to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.
Stein Manifolds and Holomorphic Mappings
Author: Franc Forstnerič
Publisher: Springer
ISBN: 3319610589
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
Publisher: Springer
ISBN: 3319610589
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
Hyperbolic Complex Spaces
Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3662035820
Category : Mathematics
Languages : en
Pages : 480
Book Description
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.
Publisher: Springer Science & Business Media
ISBN: 3662035820
Category : Mathematics
Languages : en
Pages : 480
Book Description
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.
The Schwarz Lemma
Author: Sean Dineen
Publisher: Courier Dover Publications
ISBN: 0486801209
Category : Mathematics
Languages : en
Pages : 260
Book Description
Originally published: Oxford: Clarendon Press, 1989.
Publisher: Courier Dover Publications
ISBN: 0486801209
Category : Mathematics
Languages : en
Pages : 260
Book Description
Originally published: Oxford: Clarendon Press, 1989.
Value Distribution Theory Related to Number Theory
Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 3764375698
Category : Mathematics
Languages : en
Pages : 546
Book Description
The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.
Publisher: Springer Science & Business Media
ISBN: 3764375698
Category : Mathematics
Languages : en
Pages : 546
Book Description
The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512884
Category : Mathematics
Languages : en
Pages : 595
Book Description
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.
Publisher: Springer Science & Business Media
ISBN: 9401512884
Category : Mathematics
Languages : en
Pages : 595
Book Description
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.
Normal Families and Normal Functions
Author: Peter V. Dovbush
Publisher: CRC Press
ISBN: 1003849857
Category : Mathematics
Languages : en
Pages : 269
Book Description
This book centers on normal families of holomorphic and meromorphic functions and also normal functions. The authors treat one complex variable, several complex variables, and infinitely many complex variables (i.e., Hilbert space). The theory of normal families is more than 100 years old. It has played a seminal role in the function theory of complex variables. It was used in the first rigorous proof of the Riemann mapping theorem. It is used to study automorphism groups of domains, geometric analysis, and partial differential equations. The theory of normal families led to the idea, in 1957, of normal functions as developed by Lehto and Virtanen. This is the natural class of functions for treating the Lindelof principle. The latter is a key idea in the boundary behavior of holomorphic functions. This book treats normal families, normal functions, the Lindelof principle, and other related ideas. Both the analytic and the geometric approaches to the subject area are offered. The authors include many incisive examples. The book could be used as the text for a graduate research seminar. It would also be useful reading for established researchers and for budding complex analysts.
Publisher: CRC Press
ISBN: 1003849857
Category : Mathematics
Languages : en
Pages : 269
Book Description
This book centers on normal families of holomorphic and meromorphic functions and also normal functions. The authors treat one complex variable, several complex variables, and infinitely many complex variables (i.e., Hilbert space). The theory of normal families is more than 100 years old. It has played a seminal role in the function theory of complex variables. It was used in the first rigorous proof of the Riemann mapping theorem. It is used to study automorphism groups of domains, geometric analysis, and partial differential equations. The theory of normal families led to the idea, in 1957, of normal functions as developed by Lehto and Virtanen. This is the natural class of functions for treating the Lindelof principle. The latter is a key idea in the boundary behavior of holomorphic functions. This book treats normal families, normal functions, the Lindelof principle, and other related ideas. Both the analytic and the geometric approaches to the subject area are offered. The authors include many incisive examples. The book could be used as the text for a graduate research seminar. It would also be useful reading for established researchers and for budding complex analysts.
Several Complex Variables III
Author: G.M. Khenkin
Publisher: Springer Science & Business Media
ISBN: 364261308X
Category : Mathematics
Languages : en
Pages : 265
Book Description
We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space
Publisher: Springer Science & Business Media
ISBN: 364261308X
Category : Mathematics
Languages : en
Pages : 265
Book Description
We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space
Nevanlinna Theory
Author: Kunihiko Kodaira
Publisher: Springer
ISBN: 9811067872
Category : Mathematics
Languages : en
Pages : 93
Book Description
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.
Publisher: Springer
ISBN: 9811067872
Category : Mathematics
Languages : en
Pages : 93
Book Description
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.