Hydrogen Aircraft Technology

Hydrogen Aircraft Technology PDF Author: G.Daniel Brewer
Publisher: Routledge
ISBN: 1351439782
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Liquid hydrogen is shown to be the ideal fuel for civil transport aircraft, as well as for many types of military aircraft. Hydrogen Aircraft Technology discusses the potential of hydrogen for subsonic, supersonic, and hypersonic applications. Designs with sample configurations of aircraft for all three speed categories are presented, in addition to performance comparisons to equivalent designs for aircraft using conventional kerosine-type fuel and configurations for aircraft using liquid methane fuel. Other topics discussed include conceptual designs of the principal elements of fuel containment systems required for cryogenic fuels, operational elements (e.g., pumps, valves, pressure regulators, heat exchangers, lines and fittings), modifications for turbine engines to maximize the benefit of hydrogen, safety aspects compared to kerosine and methane fueled designs, equipment and facility designs for servicing hydrogen-fueled aircraft, production methods for liquid hydrogen, and the environmental advantages for using liquid hydrogen. The book also presents a plan for conducting the necessary development of technology and introducing hydrogen fuel into the worldwide civil air transport industry. Hydrogen Aircraft Technology will provide fascinating reading for anyone interested in aircraft and hydrogen fuel designs.

Hydrogen Aircraft Technology

Hydrogen Aircraft Technology PDF Author: G.Daniel Brewer
Publisher: Routledge
ISBN: 1351439782
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Liquid hydrogen is shown to be the ideal fuel for civil transport aircraft, as well as for many types of military aircraft. Hydrogen Aircraft Technology discusses the potential of hydrogen for subsonic, supersonic, and hypersonic applications. Designs with sample configurations of aircraft for all three speed categories are presented, in addition to performance comparisons to equivalent designs for aircraft using conventional kerosine-type fuel and configurations for aircraft using liquid methane fuel. Other topics discussed include conceptual designs of the principal elements of fuel containment systems required for cryogenic fuels, operational elements (e.g., pumps, valves, pressure regulators, heat exchangers, lines and fittings), modifications for turbine engines to maximize the benefit of hydrogen, safety aspects compared to kerosine and methane fueled designs, equipment and facility designs for servicing hydrogen-fueled aircraft, production methods for liquid hydrogen, and the environmental advantages for using liquid hydrogen. The book also presents a plan for conducting the necessary development of technology and introducing hydrogen fuel into the worldwide civil air transport industry. Hydrogen Aircraft Technology will provide fascinating reading for anyone interested in aircraft and hydrogen fuel designs.

Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123

Get Book Here

Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Sustainable Aviation

Sustainable Aviation PDF Author: Judith L. Walls
Publisher: Springer Nature
ISBN: 303090895X
Category : Business & Economics
Languages : en
Pages : 222

Get Book Here

Book Description
This book analyses from a management perspective how the aviation industry can achieve a sustainability transformation in order to reach the Paris climate targets for 2050 and provides various strategic and operational recommendations in this regard. It examines various elements of the aviation system exhaustively, including technologies, consumers, airlines, airports and policies, from both short- and long-term standpoints. Specific questions and contradictions, as well as concrete options for taking action, are presented. It also includes numerous practical case studies, which will help practitioners transfer the concepts into their everyday work. The book is aimed at a broad, professional audience consisting of managers, politicians and regulators, but also at advanced students engaged in academic and professional education.

Future Flight

Future Flight PDF Author: Bill Siuru
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 220

Get Book Here

Book Description


Electrified Aircraft Propulsion

Electrified Aircraft Propulsion PDF Author: Kiruba Haran
Publisher: Cambridge University Press
ISBN: 1108321615
Category : Technology & Engineering
Languages : en
Pages : 318

Get Book Here

Book Description
What are the benefits of electrified propulsion for large aircraft? What technology advancements are required to realize these benefits? How can the aerospace industry transition from today's technologies to state-of-the-art electrified systems? Learn the answers with this multidisciplinary text, combining expertise from leading researchers in electrified aircraft propulsion. The book includes broad coverage of electrification technologies – spanning power systems and power electronics, materials science, superconductivity and cryogenics, thermal management, battery chemistry, system design, and system optimization – and a clear-cut road map identifying remaining gaps between the current state-of-the-art and future performance technologies. Providing expert guidance on areas for future research and investment and an ideal introduction to cutting-edge advances and outstanding challenges in large electric aircraft design, this is a perfect resource for graduate students, researchers, electrical and aeronautical engineers, policymakers, and management professionals interested in next-generation commercial flight technologies.

Aircraft Cryogenics

Aircraft Cryogenics PDF Author: Ernst Wolfgang Stautner
Publisher: Springer Nature
ISBN: 3031714083
Category :
Languages : en
Pages : 349

Get Book Here

Book Description


Sustainable Aviation Technology and Operations

Sustainable Aviation Technology and Operations PDF Author: Roberto Sabatini
Publisher: John Wiley & Sons
ISBN: 1118932609
Category : Technology & Engineering
Languages : en
Pages : 549

Get Book Here

Book Description
Sustainable Aviation Technology and Operations Comprehensively covers research and development initiatives to enhance the environmental sustainability of the??aviation sector Sustainable Aviation Technology and Operations provides a comprehensive and timely outlook of recent research advances in aeronautics and air transport, with emphasis on both long-term sustainable development goals and current achievements. This book discusses some of the most promising advances in aircraft technologies, air traffic management and systems engineering methodologies for sustainable aviation. The topics covered include: propulsion, aerodynamics, avionics, structures, materials, airspace management, biofuels and sustainable lifecycle management. The physical processes associated with various aircraft emissions — including air pollutants, noise and contrails — are presented to support the development of computational models for aircraft design, flight path optimization and environmental impact assessment. Relevant advances in systems engineering and lifecycle management processes are also covered, bridging some of the existing gaps between academic research and industry best practices. A collection of research case studies complements the book, highlighting opportunities for a timely uptake of the most promising technologies, towards a more efficient and environmentally sustainable aviation future. Key features: Contains important research and industry relevant contributions from world-class experts. Addresses recent advances in aviation sustainability including multidisciplinary design approaches and multi-objective operational optimisation methods. Includes a number of research case studies, addressing propulsion, aerostructures, alternative aviation fuels, avionics, air traffic management, and sustainable lifecycle management solutions. Sustainable Aviation Technology and Operations is an excellent book for aerospace engineers, aviation scientists, researchers and graduate students involved in the field.

Review and Evaluation of the Air Force Hypersonic Technology Program

Review and Evaluation of the Air Force Hypersonic Technology Program PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309061423
Category : Technology & Engineering
Languages : en
Pages : 76

Get Book Here

Book Description
This study was undertaken in response to a request by the U.S. Air Force that the National Research Council (NRC) examine whether the technologies that underlie the concept of a hypersonic, air-launched, air-breathing, hydrocarbon-fueled missile with speeds up to Mach 81 can be demonstrated in time to be initially operational by 2015. To conduct the study, the NRC appointed the Committee on Review and Evaluation of the Air Force Hypersonic Technology Program, under the auspices of the Air Force Science and Technology Board.

Airship Technology

Airship Technology PDF Author: G. A. Khoury
Publisher: Cambridge University Press
ISBN: 9780521607537
Category : Technology & Engineering
Languages : en
Pages : 564

Get Book Here

Book Description
A unique and indispensable guide to modern airship design and operation, for researchers and professionals working in mechanical and aerospace engineering.

Uninhabited Air Vehicles

Uninhabited Air Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309171776
Category : Technology & Engineering
Languages : en
Pages : 124

Get Book Here

Book Description
U.S. Air Force (USAF) planners have envisioned that uninhabited air vehicles (UAVs), working in concert with inhabited vehicles, will become an integral part of the future force structure. Current plans are based on the premise that UAVs have the potential to augment, or even replace, inhabited aircraft in a variety of missions. However, UAV technologies must be better understood before they will be accepted as an alternative to inhabited aircraft on the battlefield. The U.S. Air Force Office of Scientific Research (AFOSR) requested that the National Research Council, through the National Materials Advisory Board and the Aeronautics and Space Engineering Board, identify long-term research opportunities for supporting the development of technologies for UAVs. The objectives of the study were to identify technological developments that would improve the performance and reliability of "generation-after-next" UAVs at lower cost and to recommend areas of fundamental research in materials, structures, and aeronautical technologies. The study focused on innovations in technology that would "leapfrog" current technology development and would be ready for scaling-up in the post-2010 time frame (i.e., ready for use on aircraft by 2025).