How We Teach Science

How We Teach Science PDF Author: John L. Rudolph
Publisher: Harvard University Press
ISBN: 0674240383
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
A former Wisconsin high school science teacher makes the case that how and why we teach science matters, especially now that its legitimacy is under attack. Why teach science? The answer to that question will determine how it is taught. Yet despite the enduring belief in this country that science should be taught, there has been no enduring consensus about how or why. This is especially true when it comes to teaching scientific process. Nearly all of the basic knowledge we have about the world is rock solid. The science we teach in high schools in particular—laws of motion, the structure of the atom, cell division, DNA replication, the universal speed limit of light—is accepted as the way nature works. Everyone also agrees that students and the public more generally should understand the methods used to gain this knowledge. But what exactly is the scientific method? Ever since the late 1800s, scientists and science educators have grappled with that question. Through the years, they’ve advanced an assortment of strategies, ranging from “the laboratory method” to the “five-step method” to “science as inquiry” to no method at all. How We Teach Science reveals that each strategy was influenced by the intellectual, cultural, and political circumstances of the time. In some eras, learning about experimentation and scientific inquiry was seen to contribute to an individual’s intellectual and moral improvement, while in others it was viewed as a way to minimize public interference in institutional science. John Rudolph shows that how we think about and teach science will either sustain or thwart future innovation, and ultimately determine how science is perceived and received by the public.

How We Teach Science

How We Teach Science PDF Author: John L. Rudolph
Publisher: Harvard University Press
ISBN: 0674240383
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
A former Wisconsin high school science teacher makes the case that how and why we teach science matters, especially now that its legitimacy is under attack. Why teach science? The answer to that question will determine how it is taught. Yet despite the enduring belief in this country that science should be taught, there has been no enduring consensus about how or why. This is especially true when it comes to teaching scientific process. Nearly all of the basic knowledge we have about the world is rock solid. The science we teach in high schools in particular—laws of motion, the structure of the atom, cell division, DNA replication, the universal speed limit of light—is accepted as the way nature works. Everyone also agrees that students and the public more generally should understand the methods used to gain this knowledge. But what exactly is the scientific method? Ever since the late 1800s, scientists and science educators have grappled with that question. Through the years, they’ve advanced an assortment of strategies, ranging from “the laboratory method” to the “five-step method” to “science as inquiry” to no method at all. How We Teach Science reveals that each strategy was influenced by the intellectual, cultural, and political circumstances of the time. In some eras, learning about experimentation and scientific inquiry was seen to contribute to an individual’s intellectual and moral improvement, while in others it was viewed as a way to minimize public interference in institutional science. John Rudolph shows that how we think about and teach science will either sustain or thwart future innovation, and ultimately determine how science is perceived and received by the public.

How We Teach Science

How We Teach Science PDF Author: John L. Rudolph
Publisher:
ISBN: 9780674240391
Category :
Languages : en
Pages : 308

Get Book Here

Book Description
"The science taught in high schools-Newton's theory of universal gravitation, basic structure of the atom, cell division, DNA replication-is accepted as the way nature works. What is puzzling is how this precisely specified knowledge could come from an intellectual process-the scientific method-that has been incredibly difficult to describe or characterize with any precision. Philosophers, sociologists, and scientists have weighed in on how science operates without arriving at any consensus. Despite this confusion, the scientific method has been one of the highest priorities of science teaching in the United States over the past 150 years. Everyone agrees that high school students and the public more generally should understand the process of science, if only we could determine exactly what it is. From the rise of the laboratory method in the late nineteenth century, through the "five step" method, to the present day, John Rudolph tracks the changing attitudes, methods, and impacts of science education. Of particular interest is the interplay between various stakeholders: students, school systems, government bodies, the professional science community, and broader culture itself. Rudolph demonstrates specifically how the changing depictions of the processes of science have been bent to different social purposes in various historical periods. In some eras, learning about the process of science was thought to contribute to the intellectual and moral improvement of the individual, while in others it was seen as a way to minimize public involvement (or interference) in institutional science. Rudolph ultimately shows that how we teach the methodologies of science matters a great deal, especially in our current era, where the legitimacy of science is increasingly under attack."--

How We Teach Science - What′s Changed, and Why It Matters

How We Teach Science - What′s Changed, and Why It Matters PDF Author: John L. Rudolph
Publisher:
ISBN: 0674919343
Category : Education
Languages : en
Pages : 321

Get Book Here

Book Description
The science taught in high schools-Newton's theory of universal gravitation, basic structure of the atom, cell division, DNA replication-is accepted as the way nature works. What is puzzling is how this precisely specified knowledge could come from an intellectual process-the scientific method-that has been incredibly difficult to describe or characterize with any precision. Philosophers, sociologists, and scientists have weighed in on how science operates without arriving at any consensus. Despite this confusion, the scientific method has been one of the highest priorities of science teaching in the United States over the past 150 years. Everyone agrees that high school students and the public more generally should understand the process of science, if only we could determine exactly what it is. From the rise of the laboratory method in the late nineteenth century, through the "five step" method, to the present day, John Rudolph tracks the changing attitudes, methods, and impacts of science education. Of particular interest is the interplay between various stakeholders: students, school systems, government bodies, the professional science community, and broader culture itself. Rudolph demonstrates specifically how the changing depictions of the processes of science have been bent to different social purposes in various historical periods. In some eras, learning about the process of science was thought to contribute to the intellectual and moral improvement of the individual, while in others it was seen as a way to minimize public involvement (or interference) in institutional science. Rudolph ultimately shows that how we teach the methodologies of science matters a great deal, especially in our current era, where the legitimacy of science is increasingly under attack.--

Teaching Science in Diverse Classrooms

Teaching Science in Diverse Classrooms PDF Author: Douglas B. Larkin
Publisher: Routledge
ISBN: 0429576382
Category : Education
Languages : en
Pages : 215

Get Book Here

Book Description
As a distinctive voice in science education writing, Douglas Larkin provides a fresh perspective for science teachers who work to make real science accessible to all K-12 students. Through compelling anecdotes and vignettes, this book draws deeply on research to present a vision of successful and inspiring science teaching that builds upon the prior knowledge, experiences, and interests of students. With empathy for the challenges faced by contemporary science teachers, Teaching Science in Diverse Classrooms encourages teachers to embrace the intellectual task of engaging their students in learning science, and offers an abundance of examples of what high-quality science teaching for all students looks like. Divided into three sections, this book is a connected set of chapters around the central idea that the decisions made by good science teachers help light the way for their students along both familiar and unfamiliar pathways to understanding. The book addresses topics and issues that occur in the daily lives and career arcs of science teachers such as: • Aiming for culturally relevant science teaching • Eliciting and working with students’ ideas • Introducing discussion and debate • Reshaping school science with scientific practices • Viewing science teachers as science learners Grounded in the Next Generation Science Standards (NGSS), this is a perfect supplementary resource for both preservice and inservice teachers and teacher educators that addresses the intellectual challenges of teaching science in contemporary classrooms and models how to enact effective, reform

Inquiry and the National Science Education Standards

Inquiry and the National Science Education Standards PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309064767
Category : Education
Languages : en
Pages : 223

Get Book Here

Book Description
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.

Taking Science to School

Taking Science to School PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404

Get Book Here

Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.

Escape from the Ivory Tower

Escape from the Ivory Tower PDF Author: Nancy Baron
Publisher: Island Press
ISBN: 1597269654
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
Most scientists and researchers aren’t prepared to talk to the press or to policymakers—or to deal with backlash. Many researchers have the horror stories to prove it. What’s clear, according to Nancy Baron, is that scientists, journalists and public policymakers come from different cultures. They follow different sets of rules, pursue different goals, and speak their own language. To effectively reach journalists and public officials, scientists need to learn new skills and rules of engagement. No matter what your specialty, the keys to success are clear thinking, knowing what you want to say, understanding your audience, and using everyday language to get your main points across. In this practical and entertaining guide to communicating science, Baron explains how to engage your audience and explain why a particular finding matters. She explores how to ace your interview, promote a paper, enter the political fray, and use new media to connect with your audience. The book includes advice from journalists, decision makers, new media experts, bloggers and some of the thousands of scientists who have participated in her communication workshops. Many of the researchers she has worked with have gone on to become well-known spokespeople for science-related issues. Baron and her protégées describe the risks and rewards of “speaking up,” how to deal with criticism, and the link between communications and leadership. The final chapter, ‘Leading the Way’ offers guidance to scientists who want to become agents of change and make your science matter. Whether you are an absolute beginner or a seasoned veteran looking to hone your skills, Escape From the Ivory Tower can help make your science understood, appreciated and perhaps acted upon.

Principles and Big Ideas of Science Education

Principles and Big Ideas of Science Education PDF Author: Wynne Harlen
Publisher:
ISBN: 9780863574313
Category : Discoveries in science
Languages : en
Pages : 60

Get Book Here

Book Description


Why We Teach Science (and Why We Should)

Why We Teach Science (and Why We Should) PDF Author:
Publisher: Oxford University Press
ISBN: 0192867199
Category : Education
Languages : en
Pages : 225

Get Book Here

Book Description
Few people question the importance of science education in American schooling. The public readily accepts that it is the key to economic growth through innovation, develops the ability to reason more effectively, and enables us to solve the everyday problems we encounter through knowing how the world works. Good science teaching results in all these benefits and more -- or so we think. But what if all this is simply wrong? What if the benefits we assume science education produces turn out to be an illusion, nothing more than wishful thinking? In Why We Teach Science (and Why We Should), former high school teacher and historian of science education John L. Rudolph examines the reasons we've long given for teaching science and assesses how they hold up to what we know about what students really learn (or don't learn) in science classrooms and what research tells us about how people actually interact with science in their daily lives. The results will surprise you. Instead of more and more rigorous traditional science education to fill the STEM pipeline, Rudolph challenges us to think outside the box and makes the case for an expansive science education aimed instead at rebuilding trust between science and the public -- something we desperately need in our current era of impending natural challenges and science denial.

How Students Learn

How Students Learn PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309089506
Category : Education
Languages : en
Pages : 265

Get Book Here

Book Description
How Students Learn: Science in the Classroom builds on the discoveries detailed in the best-selling How People Learn. Now these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in science at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. This book discusses how to build straightforward science experiments into true understanding of scientific principles. It also features illustrated suggestions for classroom activities.