Homology of Complexes of Degree One Graphs

Homology of Complexes of Degree One Graphs PDF Author: Dikran B. Karagueuzian
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Get Book Here

Book Description


Simplicial Complexes of Graphs

Simplicial Complexes of Graphs PDF Author: Jakob Jonsson
Publisher: Springer Science & Business Media
ISBN: 3540758585
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory.

The Gelfand Mathematical Seminars, 1990–1992

The Gelfand Mathematical Seminars, 1990–1992 PDF Author: L. Corwin
Publisher: Springer Science & Business Media
ISBN: 1461203457
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This Seminar began in Moscow in November 1943 and has continued without interruption up to the present. We are happy that with this vol ume, Birkhiiuser has begun to publish papers of talks from the Seminar. It was, unfortunately, difficult to organize their publication before 1990. Since 1990, most of the talks have taken place at Rutgers University in New Brunswick, New Jersey. Parallel seminars were also held in Moscow, and during July, 1992, at IRES in Bures-sur-Yvette, France. Speakers were invited to submit papers in their own style, and to elaborate on what they discussed in the Seminar. We hope that readers will find the diversity of styles appealing, and recognize that to some extent this reflects the diversity of styles in a mathematical society. The principal aim was to have interesting talks, even if the topic was not especially popular at the time. The papers listed in the Table of Contents reflect some of the rich variety of ideas presented in the Seminar. Not all the speakers submit ted papers. Among the interesting talks that influenced the seminar in an important way, let us mention, for example, that of R. Langlands on per colation theory and those of J. Conway and J. McKay on sporadic groups. In addition, there were many extemporaneous talks as well as short discus sions.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology PDF Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 9783540730514
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Acyclic Models

Acyclic Models PDF Author: Michael Barr
Publisher: American Mathematical Soc.
ISBN: 0821828770
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology PDF Author: James F. Davis
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Ends of Complexes

Ends of Complexes PDF Author: Bruce Hughes
Publisher: Cambridge University Press
ISBN: 0521576253
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
A systematic exposition of the theory and practice of ends of manifolds and CW complexes, not previously available.

Graded Algebraic Structures and the Homology of Graph Complexes

Graded Algebraic Structures and the Homology of Graph Complexes PDF Author: Michael Robert Penkava
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Get Book Here

Book Description


Computational Topology

Computational Topology PDF Author: Herbert Edelsbrunner
Publisher: American Mathematical Soc.
ISBN: 0821849255
Category : Computers
Languages : en
Pages : 256

Get Book Here

Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.