History Algebraic Geometry

History Algebraic Geometry PDF Author: Jean Dieudonné
Publisher: CRC Press
ISBN: 9780412993718
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.

History Algebraic Geometry

History Algebraic Geometry PDF Author: Jean Dieudonné
Publisher: CRC Press
ISBN: 9780412993718
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.

A History of Algebraic and Differential Topology, 1900 - 1960

A History of Algebraic and Differential Topology, 1900 - 1960 PDF Author: Jean Dieudonné
Publisher: Springer Science & Business Media
ISBN: 0817649077
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet

An Undergraduate Primer in Algebraic Geometry

An Undergraduate Primer in Algebraic Geometry PDF Author: Ciro Ciliberto
Publisher: Springer Nature
ISBN: 3030710211
Category : Mathematics
Languages : en
Pages : 327

Get Book Here

Book Description
This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.

Algebraic Geometry

Algebraic Geometry PDF Author: Solomon Lefschetz
Publisher: Courier Corporation
ISBN: 0486154726
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

Algebraic Geometry

Algebraic Geometry PDF Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Geometry and Algebra in Ancient Civilizations

Geometry and Algebra in Ancient Civilizations PDF Author: Bartel L. van der Waerden
Publisher: Springer Science & Business Media
ISBN: 3642617794
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
Originally, my intention was to write a "History of Algebra", in two or three volumes. In preparing the first volume I saw that in ancient civiliza tions geometry and algebra cannot well be separated: more and more sec tions on ancient geometry were added. Hence the new title of the book: "Geometry and Algebra in Ancient Civilizations". A subsequent volume on the history of modem algebra is in preparation. It will deal mainly with field theory, Galois theory and theory of groups. I want to express my deeply felt gratitude to all those who helped me in shaping this volume. In particular, I want to thank Donald Blackmore Wagner (Berkeley) who put at my disposal his English translation of the most interesting parts of the Chinese "Nine Chapters of the Art of Arith metic" and of Liu Hui's commentary to this classic, and also Jacques Se siano (Geneva), who kindly allowed me to use his translation of the re cently discovered Arabic text of four books of Diophantos not extant in Greek. Warm thanks are also due to Wyllis Bandler (Colchester, England) who read my English text very carefully and suggested several improve ments, and to Annemarie Fellmann (Frankfurt) and Erwin Neuenschwan der (Zurich) who helped me in correcting the proof sheets. Miss Fellmann also typed the manuscript and drew the figures. I also want to thank the editorial staff and production department of Springer-Verlag for their nice cooperation.

Classical Algebraic Geometry

Classical Algebraic Geometry PDF Author: Igor V. Dolgachev
Publisher: Cambridge University Press
ISBN: 1139560786
Category : Mathematics
Languages : en
Pages : 653

Get Book Here

Book Description
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Geometry by Its History

Geometry by Its History PDF Author: Alexander Ostermann
Publisher: Springer Science & Business Media
ISBN: 3642291635
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as well. The following three chapters explain the revolution in geometry due to the progress made in the field of algebra by Descartes, Euler and Gauss. Spatial geometry, vector algebra and matrices are treated in chapters 9 and 10. The last chapter offers an introduction to projective geometry, which emerged in the 19thcentury. Complemented by numerous examples, exercises, figures and pictures, the book offers both motivation and insightful explanations, and provides stimulating and enjoyable reading for students and teachers alike.

History of Analytic Geometry

History of Analytic Geometry PDF Author: Carl B. Boyer
Publisher: Courier Corporation
ISBN: 0486154513
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850. 1956 edition. Analytical bibliography. Index.

A History of Non-Euclidean Geometry

A History of Non-Euclidean Geometry PDF Author: Boris A. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 1441986804
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.