Author: Bjorn Engquist
Publisher: Cambridge University Press
ISBN: 0521134439
Category : Mathematics
Languages : en
Pages : 254
Book Description
Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.
Highly Oscillatory Problems
Author: Bjorn Engquist
Publisher: Cambridge University Press
ISBN: 0521134439
Category : Mathematics
Languages : en
Pages : 254
Book Description
Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.
Publisher: Cambridge University Press
ISBN: 0521134439
Category : Mathematics
Languages : en
Pages : 254
Book Description
Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.
Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions
Author: Thomas Trogdon
Publisher: SIAM
ISBN: 1611974194
Category : Mathematics
Languages : en
Pages : 370
Book Description
Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?
Publisher: SIAM
ISBN: 1611974194
Category : Mathematics
Languages : en
Pages : 370
Book Description
Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?
Hybrid High-Order Methods
Author: Matteo Cicuttin
Publisher: Springer Nature
ISBN: 3030814777
Category : Mathematics
Languages : en
Pages : 138
Book Description
This book provides a comprehensive coverage of hybrid high-order methods for computational mechanics. The first three chapters offer a gentle introduction to the method and its mathematical foundations for the diffusion problem. The next four chapters address applications of increasing complexity in the field of computational mechanics: linear elasticity, hyperelasticity, wave propagation, contact, friction, and plasticity. The last chapter provides an overview of the main implementation aspects including some examples of Matlab code. The book is primarily intended for graduate students, researchers, and engineers working in related fields of application, and it can also be used as a support for graduate and doctoral lectures.
Publisher: Springer Nature
ISBN: 3030814777
Category : Mathematics
Languages : en
Pages : 138
Book Description
This book provides a comprehensive coverage of hybrid high-order methods for computational mechanics. The first three chapters offer a gentle introduction to the method and its mathematical foundations for the diffusion problem. The next four chapters address applications of increasing complexity in the field of computational mechanics: linear elasticity, hyperelasticity, wave propagation, contact, friction, and plasticity. The last chapter provides an overview of the main implementation aspects including some examples of Matlab code. The book is primarily intended for graduate students, researchers, and engineers working in related fields of application, and it can also be used as a support for graduate and doctoral lectures.
Geometric Numerical Integration
Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662050188
Category : Mathematics
Languages : en
Pages : 526
Book Description
This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.
Publisher: Springer Science & Business Media
ISBN: 3662050188
Category : Mathematics
Languages : en
Pages : 526
Book Description
This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.
Structure-Preserving Algorithms for Oscillatory Differential Equations II
Author: Xinyuan Wu
Publisher: Springer
ISBN: 3662481561
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.
Publisher: Springer
ISBN: 3662481561
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.
Computing Highly Oscillatory Integrals
Author: Alfredo Deano
Publisher: SIAM
ISBN: 1611975123
Category : Mathematics
Languages : en
Pages : 207
Book Description
Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.
Publisher: SIAM
ISBN: 1611975123
Category : Mathematics
Languages : en
Pages : 207
Book Description
Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.
An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations
Author: Linda Ruth Petzold
Publisher:
ISBN:
Category : Eigenvalues
Languages : en
Pages : 288
Book Description
Publisher:
ISBN:
Category : Eigenvalues
Languages : en
Pages : 288
Book Description
Geometric Integrators for Differential Equations with Highly Oscillatory Solutions
Author: Xinyuan Wu
Publisher: Springer Nature
ISBN: 981160147X
Category : Mathematics
Languages : en
Pages : 507
Book Description
The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.
Publisher: Springer Nature
ISBN: 981160147X
Category : Mathematics
Languages : en
Pages : 507
Book Description
The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.
Structure-Preserving Algorithms for Oscillatory Differential Equations
Author: Xinyuan Wu
Publisher: Springer Science & Business Media
ISBN: 364235338X
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.
Publisher: Springer Science & Business Media
ISBN: 364235338X
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations
Author: Gabriel R. Barrenechea
Publisher: Springer
ISBN: 3319416405
Category : Computers
Languages : en
Pages : 443
Book Description
This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.
Publisher: Springer
ISBN: 3319416405
Category : Computers
Languages : en
Pages : 443
Book Description
This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.