High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate

High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate PDF Author: Simone Lolli
Publisher: MDPI
ISBN: 3039436015
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
Remote Sensing is of paramount importance for Earth Observation to monitor and analyze the Earth’s vital signs. In this Special Issue are reported the latest research results involving active optical remote sensing instruments, both from ground-based to satellite platforms, that are involved in analyzing the vertical and horizontal aerosol and cloud distribution, other than their geometrical, optical and microphysical properties. Those active optical remote sensing techniques are also very useful in determining pollutant dispersion and the dynamics inside the boundary layer. The published studies put in evidence the hidden mechanisms on how pollution from the source is advected transnationally in other countries and the interaction with local meteorology.

High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate

High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate PDF Author: Simone Lolli
Publisher: MDPI
ISBN: 3039436015
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
Remote Sensing is of paramount importance for Earth Observation to monitor and analyze the Earth’s vital signs. In this Special Issue are reported the latest research results involving active optical remote sensing instruments, both from ground-based to satellite platforms, that are involved in analyzing the vertical and horizontal aerosol and cloud distribution, other than their geometrical, optical and microphysical properties. Those active optical remote sensing techniques are also very useful in determining pollutant dispersion and the dynamics inside the boundary layer. The published studies put in evidence the hidden mechanisms on how pollution from the source is advected transnationally in other countries and the interaction with local meteorology.

High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate

High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate PDF Author: Simone Lolli
Publisher:
ISBN: 9783039436026
Category :
Languages : en
Pages : 242

Get Book Here

Book Description
Remote Sensing is of paramount importance for Earth Observation to monitor and analyze the Earth's vital signs. In this Special Issue are reported the latest research results involving active optical remote sensing instruments, both from ground-based to satellite platforms, that are involved in analyzing the vertical and horizontal aerosol and cloud distribution, other than their geometrical, optical and microphysical properties. Those active optical remote sensing techniques are also very useful in determining pollutant dispersion and the dynamics inside the boundary layer. The published studies put in evidence the hidden mechanisms on how pollution from the source is advected transnationally in other countries and the interaction with local meteorology.

Remote Sensing of Aerosols, Clouds, and Precipitation

Remote Sensing of Aerosols, Clouds, and Precipitation PDF Author: Tanvir Islam
Publisher: Elsevier
ISBN: 0128104384
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. Presents new approaches in the field, along with further research opportunities, based on the latest satellite data Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field

Fast Processes in Large-Scale Atmospheric Models

Fast Processes in Large-Scale Atmospheric Models PDF Author: Yangang Liu
Publisher: John Wiley & Sons
ISBN: 1119528992
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical development of the parameterization of fast processes in numerical models Different types of major sub-grid processes and their parameterizations Efforts to unify the treatment of individual processes and their interactions Top-down versus bottom-up approaches across multiple scales Measurement techniques, observational studies, and frameworks for model evaluation Emerging challenges, new opportunities, and future research directions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Aerosol-cloud-precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition

Aerosol-cloud-precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition PDF Author: Kuan-Ting O
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Recent observational studies have shown that ultraclean layers (UCLs) and optically thin veil clouds associated with precipitating deep cumulus are common features of the marine boundary layer in the stratocumulus to cumulus transition. The very low number concentration of cloud droplet and cloud condensation nuclei in UCLs, strong precipitation in the associated cumulus, together with the low optical thickness of optically thin veil clouds, make such a system particularly appealing for the study of aerosol-cloud-precipitation interactions. More importantly, low cloud radiative properties biases (i.e., too few, too bright low cloud bias) in the current generation of global climate models (GCMs) seems strongly associated with the uncertainty in representing optically thin veil clouds, and these clouds may serve as an important constraint on the too few, too bright problem. However, systematic investigation of (1) global contribution and seasonal variability of optically thin veil clouds and (2) aerosol-cloud-precipitation interactions in UCLs and optically thin veil clouds is still lacking. We aim to investigate these problems with aircraft remote sensing, satellite measurements and a cloud resolving model. The dissertation is organized into the following three sections: • Using high resolution aircraft remote sensing measurement to characterize optically thin veil clouds in the stratocumulus to cumulus transition (SCT): Aircraft remote sensing measurements (i.e., lidar and radar) taken abroad NSF/NCAR GV-HIAPER research flights flown during the Cloud System Evolution in the Trades field campaign (CSET) sampled marine air masses between Sacramento, California (38.68N, 121.58W), and Kona (19.68N, 156.08W) are used in our study. Optically thin veil clouds, defined as the subset of low clouds with cloud bases > 1 km that do not fully attenuate high-spectral-resolution lidar signal (HSRL) (i.e., indicating optical depths 3), comprise considerable cover of low clouds (~ 40 %) over the SCT. It is found that optically thin veil clouds are also geometrically thin with cloud thickness ~ 200 m, and commonly reside in the upper boundary layer with average cloud base 1.5 km. • Investigating deeper, precipitating PBLs associated with optically thin veil clouds in the Sc-Cu Transition using spaceborne satellite measurements: Variability and vertical structure of optically thin veil clouds over SCT regions around the globe are investigated using both passive and active satellite observations. These observations reveal pronounced relationships between optically thin veil clouds, strong precipitation, deep planetary boundary layer (PBL) height and low cloud droplet number concentration (CDNC). The results are in agreement with the hypothesis that the low optical thickness of veil clouds over the SCT is contingent on the low CDNC caused by strong precipitation scavenging occurring in active cumuli, a process whose efficiency is strongly dependent on maximum condensate amount in updrafts and thus is highly constrained by PBL height. • Exploring aerosol-cloud-precipitation processes in UCLs and optically thin veil clouds system using a cloud resolving model: Characteristics of UCLs and optically thin veil clouds are investigated in the cloud resolving model (CRM). The domain mean cloud and aerosol properties in UCLs and optically thin veil clouds from CRM simulations agree with recent observational studies in general. The simulation results show that the detrainment from active precipitating cumulus produces the stratiform veil clouds, which are strongly depleted in particle concentration due to very efficient coalescence-scavenging process in ascending parcels passing through cumulus towers. The simulation shows a median CDNC in thin veil clouds of 5.8 cm−3, implying that majority of thin veil clouds are UCLs as well and confirming the strong connection between veil clouds and UCLs. In addition, there is a strong correlation between surface precipitation and the fraction of low clouds that are UCLs, and such correlation implies the importance of precipitation scavenging for the formation of UCLs. A cloud resolving model coupled with a prognostic aerosol scheme is used in our study, enabling characterization of the spatiotemporal variability of aerosol in the boundary layer. The results show that depletion of aerosol concentration starts first in the upper boundary layer that is associated with in-cloud coalescence scavenging process. The evaporation of veil clouds leaves very low CCN number concentration (Na

Satellite Aerosol Remote Sensing Over Land

Satellite Aerosol Remote Sensing Over Land PDF Author: Alexander A. Kokhanovsky
Publisher: Springer Science & Business Media
ISBN: 3540693971
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Aerosols have a significant influence on the Earth's radiation budget, but there is considerable uncertainty about the magnitude of their effect on the Earth's climate. Currently, satellite remote sensing is being increasingly utilized to improve our understanding of the effect of atmospheric aerosols on the climate system. Satellite Aerosol Remote Sensing Over Land is the only book that brings together in one volume the most up-to-date research and advances in this discipline. As well as describing the current academic theory, the book presents practical applications, utilizing state-of-the-art instrumentation, invaluable to the work of environmental scientists. With contributions by an international group of experts and leaders of correspondent aerosol retrieval groups, the book is an essential tool for all those working in the field of climate change.

Remote Sensing of Clouds and Precipitation

Remote Sensing of Clouds and Precipitation PDF Author: Constantin Andronache
Publisher: Springer
ISBN: 3319725831
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.

Mixed-Phase Clouds

Mixed-Phase Clouds PDF Author: Constantin Andronache
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

An Airborne Remote Sensing Perspective on Cloud and Precipitation Properties from Southeast Atlantic Stratocumulus Clouds

An Airborne Remote Sensing Perspective on Cloud and Precipitation Properties from Southeast Atlantic Stratocumulus Clouds PDF Author: Andrew Michael Dzambo
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Stratocumulus (StCu) clouds cover a majority of the Earth's subtropical oceanic basins, and play an important role in the global energy balance. Cloud and precipitation processes in StCu are complex, and aerosol effects add further complexity to the cloud-precipitation-climate paradigm, where these interactions are among the most widely uncertain processes in present-day climate models. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign between 2016-18 observed cloud-aerosol-precipitation interactions over the Southeast Atlantic Ocean. One of the 20+ instruments deployed during ORACLES was the Airborne Precipitation Radar - 3rd Generation (APR-3). The APR-3 collected over 18 million profiles during the three deployments. A precipitation retrieval algorithm (called 2C-RAIN) was adapted from the CloudSat 2C-RAIN-PROFILE precipitation retrieval algorithm to meet ORACLES science objectives. The majority of 2C-RAIN precipitation rates were under 0.01 mm/hr (0.25 mm/day). The sampling environments were considerably different in 2016 compared to 2017 and 2018, necessitating further investigation accounting for environmental controls. Cloud water path (CWP) retrievals were added to the 2C-RAIN algorithm. This retrieval expanded the utility of APR-3 measurements by collocating cloud and precipitation properties (namely CWP and RWP) for the investigation of aerosol indirect effects. This work find typical CWP to RWP ratios on the order of 50:1 to 200:1, implying CWP dominates the total liquid water path (LWP) signal. When partitioning rain rates with CWP and RWP for aerosol contact and non-contact cases, statistically significant differences are found in stable environments for CWP/RWP but not for retrieved rain rates, likely owing to the 100% and larger uncertainties associated with precipitation rate retrievals. Finally, evaporation processes are investigated between drizzling virga and surface precipitation. Evaporation rates/fluxes and corresponding latent cooling rates, between surface precipitation and virga, are on the order of 2:1 implying that surface precipitation contributes the most latent cooling to the local environment. Evaporating virga, regardless, cannot be ignored when studying latent heating and cooling. The development of the 2C-RAIN database for ORACLES, and analyses presented here, pave the way for additional observation-based studies in an area where satellite measurements have limited viability.

Atmospheric Remote Sensing

Atmospheric Remote Sensing PDF Author: Abhay Kumar Singh
Publisher: Elsevier
ISBN: 0323992625
Category : Science
Languages : en
Pages : 480

Get Book Here

Book Description
Atmospheric Remote Sensing: Principles and Applications discusses the fundamental principles of atmospheric remote sensing and their applications in different research domains. Furthermore, the book covers the basic concepts of satellite remote sensing of the atmosphere, followed by Ionospheric remote sensing tools like Global Positioning System (GPS) and Very Low Frequency (VLF) wave. Sections emphasize the applications of atmospheric remote study in Ionospheric perturbation, fire detection, aerosol characteristics over land, ocean and Himalayan regions. In addition, the application of atmospheric remote sensing in disaster management like dust storms, cyclones, smoke plume, aerosol-cloud interaction, and their impact on climate change are discussed. This book is a valuable reference for students, researchers and professionals working in atmospheric science, remote sensing, and related disciplines. Covers the fundamentals of remote sensing as applied to atmospheric science Includes methods and applications of remote sensing technologies for atmospheric science and related disciplines in earth science Includes full color photographs and figures that visually represent concepts discussed in the book