High Quality ZnO Epitaxial Grown by Plasma Assisted Molecular Beam Epitaxy

High Quality ZnO Epitaxial Grown by Plasma Assisted Molecular Beam Epitaxy PDF Author: Yun Zhang
Publisher:
ISBN: 9780103008936
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Described in this thesis are the growth and characterization of high quality ZnO epitaxy layers. Zinc oxide (ZnO) epitaxy layers were grown on sapphire and epi-GaN substrates respectively, using plasma assisted molecular beam epitaxy (MBE) . Various growth conditions, such as growth temperature, II/VI ratio, and buffer layers, were employed to optimize the quality of the ZnO film. The subsequent characterization of the films was carried out to evaluate the surface, optical and crystalline properties of the film, using AFM, SEM, PL and XRD techniques. It was found out that the high quality of the ZnO film was grown on epi-GaN substrates under the Low temperature of ~ 300 degrees C, flash annealing up to ~680 degrees C, followed by high temperature growth at ~600 degrees C.

High Quality ZnO Epitaxial Grown by Plasma Assisted Molecular Beam Epitaxy

High Quality ZnO Epitaxial Grown by Plasma Assisted Molecular Beam Epitaxy PDF Author: Yun Zhang
Publisher:
ISBN: 9780103008936
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Described in this thesis are the growth and characterization of high quality ZnO epitaxy layers. Zinc oxide (ZnO) epitaxy layers were grown on sapphire and epi-GaN substrates respectively, using plasma assisted molecular beam epitaxy (MBE) . Various growth conditions, such as growth temperature, II/VI ratio, and buffer layers, were employed to optimize the quality of the ZnO film. The subsequent characterization of the films was carried out to evaluate the surface, optical and crystalline properties of the film, using AFM, SEM, PL and XRD techniques. It was found out that the high quality of the ZnO film was grown on epi-GaN substrates under the Low temperature of ~ 300 degrees C, flash annealing up to ~680 degrees C, followed by high temperature growth at ~600 degrees C.

Molecular Beam Epitaxy Growth and Characerization of ZnO-based layers and Heterostructures

Molecular Beam Epitaxy Growth and Characerization of ZnO-based layers and Heterostructures PDF Author: Abdelhamid Abdelrehim Mahmoud Elshaer
Publisher: Cuvillier Verlag
ISBN: 3736927010
Category : Computers
Languages : en
Pages : 144

Get Book Here

Book Description
In semiconductor research a reliable epitaxial growth technique for growing high quality thin films and heterostructures is necessary. In the case of ZnO one of the main difficulties is the absence of suitable substrate material for ZnO epitaxial growth. Although special oxide material (for example ScAlMgO4) and ZnO bulk crystal can serve as lattice matched substrates, the quality of the substrates themselves, the size of the available wafer, and the expense do not encourage to use these lattice matched substrates for ZnO epitaxial growth. In the current research, a widely used low cost commercial substrate sapphire was employed to develop a reliable epitaxial growth technique and growth process for ZnO. The versatile epitaxial growth technique, molecular beam epitaxy (MBE) equipped with a rf-plasma source was developed for growth and various characterizations methods were conducted to obtain a fundamental understanding in both the epitaxial processes and material properties of ZnO thin films and heterostructures. Employing a thin HT MgO buffer layer prior to ZnO growth is the key to overcome the very large mismatches between c-Al2O3 substrate. Wetting the surface of Al2O3 substrate with a few MgO monolayers, lowed the surface energy, so that the lateral growth of ZnO is promoted at the initial growth stage. MgO can be grown in the same chamber as ZnO without any contamination problem. These advantages make the growth procedure of a HT MgO buffer fast and easy. The growth temperature and the growth rate of MgO buffer are found to be important to improve the ZnO heteroepitaxy. An intermediate spinel layer in epitaxial relation with the sapphire substrate as well as with the HT MgO buffer layer is formed in the early stage of growth during the deposition of the MgO at 700°C. It was found that the combination of these two layers is useful for the progressive reduction of the ZnO overgrown with the sapphire substrate.Annealing experiments reveal that as soon as the spinel layer is formed at about 700°C, it remains stable at least up to 1000°C, and even it is extended in thickness. By recording and analyzing RHEED intensity oscillations, the growth kinetics has been investigated. Flat surface morphology and layer-by-layer growth has been achieved. The stoichiometry has been deduced by analyzing the growth rate as a function of Zn and O fluxes for various growth temperatures. It is found that the sticking coefficient of oxygen radicals is less dependent on the substrate temperature than that of Zn. The stoichiometric condition shifts to larger Zn flux at higher growth temperature. The kink rZnO values determine the activated O-flux supplied by the RF plasma source at TS=500°C, 400W and a given O2-flow rate. It equals 0.5±0.05 Ås-1 per sccm. Absolute αZn values versus TS, defined as αZn=rZnO(T)/rZnO(max), where rZnO(max) is recalculated from the Zn flux measured by a quartz monitor, using Zn/ZnO molar mass and density ratios. Ex-situ characterization of the grown ZnO layers indicate that the surface morphology and crystal quality of the ZnO films grown on sapphire by MBE using either oxygen plasma cell or H2O2 as an oxidant can be extensively improved by using an HT MgO buffer. ZnO layers reveal strong variation of surface morphology versus the O/Zn flux ratio. The most flat surface morphology of ZnO is obtained when the ratio is within the 0.7-1 range. The growth under O-rich conditions leads to formation of hexagonal pyramids and at higher O/Zn ratios to a 3D growth with the top layer formed by perfectly c-oriented columnar structures of 50-100 nm in a diameter. It was also possible to recover the initial 3D growth mode to the 2D one by employing the Zn-rich growth conditions at O/Zn=0.4-0.6. Structural characterizations by high resolution X-ray diffraction (HR-XRD) and transmission electron microscopy (TEM) indicate a dramatic reduction in defect density in the ZnO epilayers grown with an HT MgO buffer. By using TEM, it was found that the dominant extending defects are edge, screw and mixed-type dislocations along c-axis. The main defects were threading dislocations. This is resulted from the well controlled layer-by-layer growth, since only the edge-type dislocation is able to accommodate the lattice mismatch, while the screw type dislocation forms much related to the initial nucleation environment.The microstructure of ZnO epilayers has been studied by HR-XRD. The full width at half maximum of the (0002) reflection, 0.007 degree, is much smaller than that of the (10-10) reflection, 0.27 degree revealing the micro-twist dominates the mosaicity, while micro-tilt is much less important.This pronounced difference of the rocking curve widths between the (0002) and (1010) reflections strongly indicates that the density of pure edge threading dislocations is greater than that of pure screw dislocations. Optical characterizations reveal that exciton plays an important role in ZnO. At room temperature free exciton recombinations dominate the photoluminescence. The ZnO epilayers reveal well resolved low temperature PL excitonic spectra with a dominant bound exciton line (3.355 eV) possessing a ~2 meV half-width and a peak of free A exciton at 3.374 eV. The low-energy tail extending from the excitonic emission peaks due to the lattice deformation is significantly reduced, which allows the observation of two electron satellites and LO-phonons replicas of free and bound excitons. Variation of growth stoichiometry from O-rich to Zn-rich results in the pronounced quench of the acceptor-bound part of the excitonic band, as well as the strong intensity redistribution of donor-bound lines which seems to be attributed to a change in the point defect density. Temperature dependence of PL spectra between 6K and room temperature every 30 K under the same excitation conditions was performed. Slowly decreases coming at 300K to about one third of the intensity at 6K. This corresponds to the activation of non-radiative channels in the capturing and recombination processes. This result was confirm by decay time measurements. PL mapping of 2 inch ZnO epilayer shows high lateral homogeneity from PL intensity distribution and PL FWHM distribution. Hall-effect measurements and Electrochemical profiling (ECV) were used to characterize the electrical properties of ZnO samples. Hall-effect measurements indicated n-type behavior with carrier concentration of 2.0x1016 cm-3 and mobility of approximately 96 cm2/Vs. ECV profile versus depth measured for the top 2.5 μm thick sample gives surface carrier concentration is 2.0x1016 cm-3 increasing to a maximum value of 1.0x1018 cm-3 the semiconductor/substrate interface. P-n heterojuntions and mesa structures comprising MBE n-ZnO layers and CVD p-4H-SiC laser were manufactured and investigated. Electrical properties of the mesa diodes have been studied with Hall measurements, and current-voltage measurements (I-V). I-V measurements of the device show good rectifying behavior, from which a turn-on voltage of about 2 V was obtained. With the excitation of O and N gas mixture in a single plasma cell, followed by the sample annealing procedure. P-type ZnO:N layers with a net hole concentration 3x1017 cm-3 using was measured. The combination of low growth temperature, slightly O-rich conditions and post-growth annealing is shown to be effective way to obtain p-doping. Further efforts are necessary to improve structural quality of the low-temperature p-type ZnO:N films. Optical properties of ZnO based II-VI heterostructures and quantum structures have also been studied. The surface roughness of ZnxMg1−xO was as low as 0.7 nm. The optical band gap and photoluminescence peak can be turned to larger energy with the same high crystallinity and without significant change in the lattice constant. The prominent PL peaks related to the SQW show a systematic blueshift with decreasing well width, which is consistent with the quantum size effect. The SQW-related emission peaks exhibit an S-shaped (redshift-blueshiftredshift) behaviour with increasing temperature, which is in contrast with that ascribed to band gap shrinkage (redshift). The observed behavior is discussed in terms of localization at lateral interface potential fluctuations. For T >70 K the integrated PL intensity is thermally activated with activation energies much less than the band offsets. It is argued that the dominant mechanism leading to the quenching of the ZnO SQW-related PL is due to the thermionic emission of excitons out of the lateral potential minima caused by potential fluctuations, such as interface fluctuations by 1 ML. Stimulated emission has been achieved at room temperature in a separate confinement double heterostructure having a 3 nm wide SQW as an active region. It has been found that a critical parameter for the lasing is the inhomogeneous broadening of both QW and barrier emission bands. MBE process for ZnO has been developed where high quality ZnO epilayers and heterostructures can be grown by molecular beam epitaxy on sapphire substrate. For nitrogen doping of ZnO, Oxygen and nitrogen were activated in the single plasma cell. No reproducible and reliable experimental results on the achievement of p-type conductivity achieved. Stimulated emission has been achieved at room temperature.

Growth and Characterization of P-type ZnO by Plasma-assisted Molecular Beam Epitaxy

Growth and Characterization of P-type ZnO by Plasma-assisted Molecular Beam Epitaxy PDF Author: Faxian Xiu
Publisher:
ISBN:
Category : Molecular beam epitaxy
Languages : en
Pages : 396

Get Book Here

Book Description


Molecular Beam Epitaxy Growth and Characterization of ZnO-based Layers and Heterostructures

Molecular Beam Epitaxy Growth and Characterization of ZnO-based Layers and Heterostructures PDF Author: Abdelhamid Abdelrehim Mahmoud Elshaer
Publisher: Cuvillier Verlag
ISBN: 386727701X
Category :
Languages : en
Pages : 143

Get Book Here

Book Description


Electrical Characterization of ZnO thin films grown by molecular beam epitaxy

Electrical Characterization of ZnO thin films grown by molecular beam epitaxy PDF Author: Vladimir Petukhov
Publisher: Cuvillier Verlag
ISBN: 373694084X
Category : Science
Languages : en
Pages : 112

Get Book Here

Book Description
For the electronic and optoelectronic device realization a precise control of the electrical properties in the utilized material is a very important issue. Doping profiles in realized p-njunctions influence the functionality of the devices. The morphological and crystal properties of a device material directly influence the electrical ones. Dislocations present in a region of p-n-junctions can short circuit them leading to malfunctions. Too rough surfaces during epitaxial growth could lead to inhomogeneities in a single or multiple quantum wells and superlattices. The main goal of the present work was to provide the basis for a reliable p-type doping of ZnO grown by molecular beam epitaxy. Firstly, the well established heteroepitaxial growth on c-sapphire substrates has been employed. Based on the theoretical and experimental works, suggesting nitrogen to be the impurity that builds the most shallow acceptor level in ZnO comparing to other group-V elements, it has been implied as a dopant. To generate reactive nitrogen atoms an rf-plasma source has been utilized in the MBE process. The resulting samples have been characterized by such methods as AFM, XRD, TEM, PL spectroscopy, temperature domain Hall measurements (TDHM) and ECV-profiling. First results of TDHM have shown that even in undoped samples the temperature dependencies of the electron mobility and carrier concentration have regions which are difficult to interpret. It is necessary to fit them with theoretical curves in order to extract the correct values. This task has proven to be very difficult. The complicated character of the dependencies has been explained in terms of the multilayer conduction model dividing a layer in thin interfacial region with mobility and carrier concentration μ1 and n1 respectivly and bulk region with a higher mobility μ2 and lower carrier concentration n2. The electrical transport in the bulk region has been modeled in terms of the general scattering theory in polar semiconductors. Such scattering mechanisms as scattering on polar-optical phonons, piezoelectric phonons, acoustic deformation potential, strain induced fields, dislocations, ionized and neutral impurities have been taken into account. Two cases have been considered to model transport in the interfacial region: 1) transport takes place in the conduction band of a highly doped degenerate semiconductor; 2) transport takes place in the impurity band formed by intermediate concentration of impurities and in conduction band in parallel. In the second case transport at the interface in conduction band has been neglected in the region of the low temperatures due to the impurities freeze-out and carrier concentration has been taken temperature independent like in the first case. To investigate experimentally the transport character in these two regions independently a mobility-spectrum analysis has been conducted. Theoretical results utilizing the two models have been compared with experimentally extracted mobility and carrier concentration in the interfacial region. It has been concluded that the concentration of donors in the layers is not high enough for the impurity band to merge with the conduction band and the second model is more consistent. The theoretically acquired donor concentration profiles have been compared with ECV-profiles. The agreement is very good. Simulations have revealed a shallow donor state with the ionization energy of approximately 45 meV . In the literature, this donor state in ZnO is attributed to hydrogen. However, due to the high diffusion mobility of hydrogen in ZnO, an annealing process would obviously decrease the carrier concentration in the samples which has not been the case. It has been suggested that the main donor centers are the electrically active crystal point defects generated by dislocations. Layers doped with nitrogen have been grown at very low temperatures (≈ 200°C) and at temperatures ranging from 400°C to 500°C, which are optimal for the epitaxial growth of ZnO. The samples grown at low temperatures are single crystalline with mosaic structure. In both cases, the introduction of the dopant increased the carrier concentration. This has been accounted for a bad crystal quality resulting in the inhomogeneous incorporation of nitrogen and for high background donor concentration due to the high dislocations densities. Additionally, the incorporation of acceptor centers shifts the Fermi-level increasing the formation probability of the compensating point defects. The analysis of TDHM showed an inconsistency of the one donor level model in the case of nitrogen doped samples. This fact and the decrease in the carrier concentration after annealing at 800°C for 30 minutes in ambient air can be explained by nitrogen forming donor-like defect complexes. In an attempt to improve the crystal quality of the heteroepitaxial layers, 15 periods of a ZnO/Zn0.6Mg0.4O superlattice structure have been inserted between the conventional double HT-MgO/LT-ZnO buffer and a main HT-ZnO layer. TDHM has revealed a very high mobility close to the values measured in a bulk ZnO for the temperature range of 20 - 300 K. However, TEM investigations of the samples have not indicated any decrease in the dislocation density comparing with the similar samples without a superlattice. Such a high mobility has been attributed to an electron transport in the superlattice structure. Heteroepitaxial growth of high quality ZnO-layers has proven to be challenging leaving the homoepitaxial growth as the only possibility to obtain the epitaxial layers with the best structural and electrical properties. The hydrothermally grown bulk ZnO substrates from two supplying companies, CrysTec and TokyoDenpa, have been employed for homoepitaxy. The substrates from CrysTec have not been epi-ready. Although AFM images reveal very flat surface, this has been damaged by the process of the chemomechanical polishing. This damaged layer must be removed. This has been achieved by the thermal annealing for 3 hours at 1050°C in ambient air. The thermally treated surfaces resulted in atomically flat terraces. XRD measurements have indicated an improvement of the crystal quality after annealing. The resistivity of the bulk substrates decreased after the thermal treatment due to out-diffusion of the compensating Li atoms letting Al, Ga and In atoms to contribute to conduction. After the longer annealing processes the etch-pits have been discovered on O-polar faces. The same features could be achieved by the chemical etching in a nitric acid on Zn-polar faces. The density of the threading dislocations on both polar faces for both types of substrates calculated by the etch-pit density investigation is about 105 1/cm2. Further the thermally treated substrates with atomically flat terraces have been utilized for homoepitaxy. The differences in growth kinetics during the molecular beam epitaxy on such substrates with the improved surface quality depending on their polarity have been investigated by RHEED measurements. The growth on a Zn-polar face has a 3D-character independently on a supplier. Morphologies of the resulting O- and Zn-polar layers have shown to be different. This has been explained by the presence of dangling bonds on Opolar face and thus, shorter diffusion time of the impinging Zn atoms on the surface. XRD and TEM measurements have shown a perfect crystal quality of the overgrown layers. The PL spectra of homoepitaxial layers are governed by the donor impurities diffused from the substrates. Considering the SIMS measurements of homoepitaxial layers found in the literature it has been concluded that the diffusion of donors in the layers grown on Zn-polar faces takes less effect then for the O-polar films. This conclusion has enforced the utilization of Zn-polar substrates supplied by CrysTec for the experiments with nitrogen doping of ZnO because of their affordable price. The electrical properties measured by ECV-profiling in series of homoepitaxial layers with varied growth parameters have shown an increase of the carrier concentration with the nitrogen incorporation. In addition, it has also been shown that the resulting electrical properties near the interface are governed mostly by the initial properties of the substrates. With increasing thickness of the layers carrier concentration saturated to the values of around 1016 1/cm3. The recent successful realization of the p-type MgZnO layers on TokyoDenpa substrates by researchers from Japan suggests switching to the p-type doped alloys because the above discussed results indicate that p-type doping with nitrogen of a pure ZnO is very difficult or even impossible. This is due to a rather fundamental reason: the formation of the compensating donor centers with the incorporation of acceptor atoms. As the first step in the future works, it is obvious to try to reproduce the results of the ZnMgO p-type doping with nitrogen employing growth on ZnO substrates.

Ion Beam Treatment of Functional Layers in Thin-film Silicon Solar Cells

Ion Beam Treatment of Functional Layers in Thin-film Silicon Solar Cells PDF Author: Wendi Zhang
Publisher: Forschungszentrum Jülich
ISBN: 3893368647
Category :
Languages : en
Pages : 215

Get Book Here

Book Description


Heteroepitaxy of Semiconductors

Heteroepitaxy of Semiconductors PDF Author: John E. Ayers
Publisher: CRC Press
ISBN: 1482254360
Category : Technology & Engineering
Languages : en
Pages : 660

Get Book Here

Book Description
In the past ten years, heteroepitaxy has continued to increase in importance with the explosive growth of the electronics industry and the development of a myriad of heteroepitaxial devices for solid state lighting, green energy, displays, communications, and digital computing. Our ever-growing understanding of the basic physics and chemistry underlying heteroepitaxy, especially lattice relaxation and dislocation dynamic, has enabled an ever-increasing emphasis on metamorphic devices. To reflect this focus, two all-new chapters have been included in this new edition. One chapter addresses metamorphic buffer layers, and the other covers metamorphic devices. The remaining seven chapters have been revised extensively with new material on crystal symmetry and relationships, III-nitride materials, lattice relaxation physics and models, in-situ characterization, and reciprocal space maps.

Growth of ZnO/GaN Distributed Bragg Refelctors by Plasma-assisted Molecular Beam Epitaxy

Growth of ZnO/GaN Distributed Bragg Refelctors by Plasma-assisted Molecular Beam Epitaxy PDF Author:
Publisher:
ISBN: 9789175973937
Category :
Languages : en
Pages :

Get Book Here

Book Description


Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology PDF Author:
Publisher: Newnes
ISBN: 0080932282
Category : Science
Languages : en
Pages : 3572

Get Book Here

Book Description
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

Pulsed Laser Deposition of Thin Films

Pulsed Laser Deposition of Thin Films PDF Author: Robert Eason
Publisher: John Wiley & Sons
ISBN: 0470052112
Category : Science
Languages : en
Pages : 754

Get Book Here

Book Description
Edited by major contributors to the field, this text summarizes current or newly emerging pulsed laser deposition application areas. It spans the field of optical devices, electronic materials, sensors and actuators, biomaterials, and organic polymers. Every scientist, technologist and development engineer who has a need to grow and pattern, to apply and use thin film materials will regard this book as a must-have resource.