High Frequency Power Converters Based on Energy Injection Control for IPT Systems

High Frequency Power Converters Based on Energy Injection Control for IPT Systems PDF Author: Hao Leo Li
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 195

Get Book Here

Book Description
A contactless power transfer system has many advantages over conventional power transmission due to the elimination of direct electrical contacts. With the development of modern technologies, IPT (Inductive Power Transfer) has become a very attractive technology for achieving wireless/contactless power transfer over the past decade. IPT has been successfully employed in many applications for materials handling, lighting, transportation, bio-medical implants, etc. To transfer power across an air gap, an IPT system employs a primary power converter to generate a high frequency alternating current in a track/coil which is then magnetically coupled to one or more power pick-ups. The design and implementation of the primary side power converter and controller are of great importance in an IPT system because they affect the whole system performance under both steady state and transient conditions. Therefore, any development and control improvement within the primary power converter are desirable. This thesis focuses on the development of converters for IPT systems based on circuit resonance and energy injection control. A voltage fed DC-AC energy injection inverter is introduced. Basic characteristics and underlying principles of the inverter are studied. A variable frequency ZCS (Zero Current Switching) control strategy is developed for the switching operation. The new DC-AC inverter can achieve high frequency AC power generation using relatively low switching frequencies with predicable current ripple and transient behavior. Furthermore the soft switching operation ensures low switching losses and reduced EMI. A detailed analytical method has been developed and extended to a system level by taking system bifurcation and power transfer capability into consideration. The critical boundaries of both the loading and coupling conditions are determined for designing energy injection inverters without frequency bifurcation. It has been found there is an optimal coupling coefficient which results in the maximum power transfer capability of the inverter. Using such a system level inverter design process, a primary track current regulation method based on energy injection control has been proposed. Furthermore, as an example, a practical contactless slip ring system has been developed using the proposed control method. A new type of direct AC-AC converter is also proposed. A control strategy is developed based on energy injection control for the AC-AC matrix converter to achieve a high frequency current generation with soft switching operation. The converter operation is analytically analyzed in detail, including the current ripple and sag caused by the alternating input voltage. The theoretical analysis is proven by simulation studies and practical experiments. The energy injection concept is also applied to push pull resonant converters with a "dual" transformation in performance which leads to a boost operation. A mathematical model employing a stroboscopic mapping technique is developed for a push pull inverter to find the multiple ZVS operation points. It has been proven by both simulation and experimental studies that the power transfer capability of a traditional push pull inverter can be increased significantly by operating it at selected low ZVS frequencies without using any additional front-end boost circuits.

High Frequency Power Converters Based on Energy Injection Control for IPT Systems

High Frequency Power Converters Based on Energy Injection Control for IPT Systems PDF Author: Hao Leo Li
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 195

Get Book Here

Book Description
A contactless power transfer system has many advantages over conventional power transmission due to the elimination of direct electrical contacts. With the development of modern technologies, IPT (Inductive Power Transfer) has become a very attractive technology for achieving wireless/contactless power transfer over the past decade. IPT has been successfully employed in many applications for materials handling, lighting, transportation, bio-medical implants, etc. To transfer power across an air gap, an IPT system employs a primary power converter to generate a high frequency alternating current in a track/coil which is then magnetically coupled to one or more power pick-ups. The design and implementation of the primary side power converter and controller are of great importance in an IPT system because they affect the whole system performance under both steady state and transient conditions. Therefore, any development and control improvement within the primary power converter are desirable. This thesis focuses on the development of converters for IPT systems based on circuit resonance and energy injection control. A voltage fed DC-AC energy injection inverter is introduced. Basic characteristics and underlying principles of the inverter are studied. A variable frequency ZCS (Zero Current Switching) control strategy is developed for the switching operation. The new DC-AC inverter can achieve high frequency AC power generation using relatively low switching frequencies with predicable current ripple and transient behavior. Furthermore the soft switching operation ensures low switching losses and reduced EMI. A detailed analytical method has been developed and extended to a system level by taking system bifurcation and power transfer capability into consideration. The critical boundaries of both the loading and coupling conditions are determined for designing energy injection inverters without frequency bifurcation. It has been found there is an optimal coupling coefficient which results in the maximum power transfer capability of the inverter. Using such a system level inverter design process, a primary track current regulation method based on energy injection control has been proposed. Furthermore, as an example, a practical contactless slip ring system has been developed using the proposed control method. A new type of direct AC-AC converter is also proposed. A control strategy is developed based on energy injection control for the AC-AC matrix converter to achieve a high frequency current generation with soft switching operation. The converter operation is analytically analyzed in detail, including the current ripple and sag caused by the alternating input voltage. The theoretical analysis is proven by simulation studies and practical experiments. The energy injection concept is also applied to push pull resonant converters with a "dual" transformation in performance which leads to a boost operation. A mathematical model employing a stroboscopic mapping technique is developed for a push pull inverter to find the multiple ZVS operation points. It has been proven by both simulation and experimental studies that the power transfer capability of a traditional push pull inverter can be increased significantly by operating it at selected low ZVS frequencies without using any additional front-end boost circuits.

Inductive Power Transfer System

Inductive Power Transfer System PDF Author: P. Marudhamuthu
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659403910
Category :
Languages : en
Pages : 64

Get Book Here

Book Description
The main objective of this project is to design a inductive power transfer system by using ac -ac converter. This paper proposes to generate a high-frequency current for inductive power-transfer (IPT) systems. Unlike traditional dc-ac converters for IPT systems, the proposed converter can achieve a high-frequency current generation directly from an ac power source without a dc link. The power converter can maintain high-frequency resonance by natural circuit oscillation and discrete energy injection control. Contact less power transfer system employ power converters to generate a high frequency current in a primary coil to magnetically coupled to one or more secondary coil across a large air gap without direct electric contact less power transfer system due to clean environment and eliminates sparking.

High-frequency Power Conversion and Variable Capacitor Control for IPT Systems

High-frequency Power Conversion and Variable Capacitor Control for IPT Systems PDF Author: Jianlong Tian
Publisher:
ISBN:
Category : Electric power distribution
Languages : en
Pages : 221

Get Book Here

Book Description
Wireless Power Transfer (WPT) technology can be dated back to more than 120 years ago with some early work by Tesla. However, practical modern WPT technologies only started in the late 19th century with the invention of high-frequency power electronic devices, which made possible the generation of high frequency voltages and currents efficiently with switch mode power converters. High frequency operation is a prominent feature and essential requirement of WPT systems compared to traditional tightly-coupled transformers and electric machines because of the loosely-coupled nature between the primary and secondary sides of WPT systems. To generate the high frequency voltages and currents for WPT systems, switch mode DC-AC power converters are usually employed, and they are preferably soft-switched for resonant operation in order to maximize the system efficiency and minimize EMI (Electromagnetic Interference). This research aims to explore new methods to control the operating frequency of WPT systems. Based on the investigation of different types of high frequency resonant converters, including current-fed energy injection converters, Class E, and autonomous push pull converters, this thesis proposes a DC-voltage Controlled Variable Capacitors (DCVC) to dynamically control the zero voltage switching (ZVS) frequency of autonomous push-pull resonant converters for adjusting or stabilizing the operating frequency, and regulating the power flow to keep the output voltage constant. The equivalent capacitances of DCVCs are varied by controlling the conduction period of a diode in parallel with part of the tuning capacitors of the proposed circuit. In this research the conduction period of the diode is controlled by a DC voltage through two different measures via a bias circuit including a resistor (R-DCVC), or a transistor (T-DCVC). Unlike conventional switch mode capacitors, the proposed DCVCs are controlled smoothly by a DC voltage, so they are more suitable for high frequency operation. In addition, because there are no active switching and related gate drive issues, the EMI (Electromagnetic Interference) of the system can be greatly reduced, and more accurate control can be achieved compared to full switch mode counterpart. The proposed DCVC method and its detailed operation for different applications are fully analysed in theory, and verified by simulation and experimental results. Both the R-DCVC and T-DCVC methods have been applied to adjust the ZVS frequency at the primary side of IPT systems. A PLL controller is designed to stabilize the operating frequency of an IPT system while maintaining soft switching conditions, which helps to simplify the pickup circuit design, particularly with multiple power pickups. It has demonstrated that using the proposed DCVC method the operating frequency of an IPT system can be varied or stabilized in the range of a few hundred kHz to tens of MHz. The T-DCVC is also applied at the secondary side of an IPT system as a series or parallel tuned variable capacitor to regulate the power flow to stabilize the output voltage against the magnetic coupling and load variations. A prototype circuit at about 10W has been built and the experimental results have shown that the output voltage can be stabilized in the range of 5V to 24V with an accuracy of 2%, which is sufficient for driving most low power consumer electronic devices.

Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles PDF Author: Md Rabiul Islam
Publisher: CRC Press
ISBN: 1000374122
Category : Technology & Engineering
Languages : en
Pages : 411

Get Book Here

Book Description
This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis are on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC system, AC and DC system stability, magnetic design for high-frequency high power density systems with advanced soft magnetic materials, modelling and simulation of mixed AC/DC system, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion.

Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles PDF Author: Md. Rabiul Islam
Publisher: CRC Press
ISBN: 1000374092
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

Selected Resonant Converters for IPT Power Supplies

Selected Resonant Converters for IPT Power Supplies PDF Author: Aiguo Patrick Hu
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 215

Get Book Here

Book Description


Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

Power Converter of Electric Machines, Renewable Energy Systems, and Transportation PDF Author: Adolfo Dannier
Publisher: MDPI
ISBN: 3036511709
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book Here

Book Description
Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems.

Analysis and Design of Current-fed Wireless Inductive Power Transfer Systems

Analysis and Design of Current-fed Wireless Inductive Power Transfer Systems PDF Author: Suvendu Samanta
Publisher:
ISBN:
Category :
Languages : en
Pages : 199

Get Book Here

Book Description
Wireless Inductive Power Transfer (IPT) technology promises a very convenient, reliable, and safe way of transferring power wirelessly. Recent research on IPT establishes its indispensable role and suitability in electric vehicle (EV) applications. Efficient design of both converters and IPT coils are essential to make this technology feasible for mass deployment. The existing research on IPT is mainly based on power converters derived from voltage-source inverter (VSI) topologies, where feasibility of current-source inverter (CSI) has received very limited attention. Considering certain limitations of voltage-fed converters, this research is focused on the concept study and feasibility analysis of current-fed power electronics for IPT systems, where the primary application is EV charging. CSI leads to parallel LC resonance in the primary side of IPT. The advantages of the parallel tank networks include lower inverter device current stress, very close to sinusoidal coil current, soft-switching of inverter devices, and natural short circuit protection during fault etc. Considering these merits, a new IPT topology is proposed in this thesis, where the inverter is full-bridge CSI and the compensations in primary and secondary sides are parallel and series types, respectively. Compared with the existing IPT topology with current-fed push-pull inverter, the proposed system does not have startup and frequency bifurcation issues. However, due to weak coupling between IPT coils, the primary side parallel capacitor experiences high voltage stress in higher power levels, and this voltage directly appears on inverter devices. To overcome this, a modified IPT topology fed from a CSI is proposed, where the primary compensation is parallel-series type and secondary compensation is series type. Detailed steady-state operation, converter design, soft-switching conditions, small-signal modelling, and closed-loop control are reported for both the topologies. To verify analytical predictions, numerical simulation is performed in PSIM 10 and experimental results obtained from a 1.6kW lab-built prototype are reported. Considering the requirement of bi-directional power flow capability to support energy injection from vehicle to grid (V2G) for future smart-grid applications, a new bidirectional IPT topology with current-fed converter is proposed. It has current-sharing feature in grid side converter and voltage doubling feature in vehicle side converter. This is the first attempt to implement bidirectional IPT with current-fed circuit and demonstrate grid to vehicle (G2V) and V2G operation. Keeping inverter output power factor lagging, ZVS turn-on of the inverter devices are always ensured irrespective of load variation. Detailed steady-state operation and converter design for both G2V and V2G modes are reported. Experimental results obtained from a 1.2kW lab-prototype are reported to verify the analysis and performances of bidirectional IPT circuit. The last part of this thesis addresses the possible improvements on reducing the number of power conversion stages to achieve higher system efficiency, compact size and reduced cost. This is usually done by using direct ac-ac converter as the primary side converter of IPT. Existing single stage IPT topologies are derived from VSI topology. From source side, these topologies have buck derived structure; therefore, none of them draw high quality current from source. In this thesis a new single stage IPT topology is proposed, which has boost derived structure and thereby capable of maintaining unity power factor at source. Dynamic load demand, source current waveshaping and effective wireless power transfer are achieved with two-loop control method. Experimental results obtained from a 1.2kW grid-connected lab-prototype are reported to justify the suitability of this single-stage IPT topology for practical use.

Advanced Control of Grid-Connected High-Power Converters

Advanced Control of Grid-Connected High-Power Converters PDF Author: Chenghui Zhang
Publisher: Springer Nature
ISBN: 9811989982
Category : Technology & Engineering
Languages : en
Pages : 279

Get Book Here

Book Description
The high-power grid-connected converters play a vital role in modern power system, realizing the conversion and transmission of electrical energy, and determining its safety, stability and efficiency. This book explores the advanced control strategies of high-power grid-connected converter to satisfy the high-power requirements in practical applications. Special attention is given to grid-connected converter modules in parallel operation to overcome the challenges of non-ideal power grid, power switches faults, and circulating current. Through the advanced control strategies presented in this book, the power capacity of grid-connected converter is flexibly increased with high-reliability and efficiency, thus expanding the application range of high-power converters in modern power system. To facilitate understanding, this book provides step-by-step model derivation and controller design for grid-connected converter. Meanwhile, it also provides the comprehensive simulation and experimental results to offer readers a deep insight into the control process of grid-connected converters. This book serves as a guide for electrical engineers and researchers involved in the development of high-power converters.

DC Power Supplies

DC Power Supplies PDF Author: Nihal Kularatna
Publisher: CRC Press
ISBN: 0415802482
Category : Technology & Engineering
Languages : en
Pages : 414

Get Book Here

Book Description
As we increasingly use electronic devices to direct our daily lives, so grows our dependence on reliable energy sources to power them. Because modern electronic systems demand steady, efficient, reliable DC voltage sources—often at a sub-1V level—commercial AC lines, batteries, and other common resources no longer suffice. New technologies also require intricate techniques to protect against natural and manmade disasters. Still, despite its importance, practical information on this critical subject remains hard to find. Using simple, accessible language to balance coverage of theoretical and practical aspects, DC Power Supplies, Power Management and Surge Protection details the essentials of power electronics circuits applicable to low-power systems, including modern portable devices. A summary of underlying principles and essential design points, it compares academic research and industry publications and reviews DC power supply fundamentals, including linear and low-dropout regulators. Content also addresses common switching regulator topologies, exploring resonant conversion approaches. Coverage includes other important topics such as: Control aspects and control theory Digital control and control ICs used in switching regulators Power management and energy efficiency Overall power conversion stage and basic protection strategies for higher reliability Battery management and comparison of battery chemistries and charge/discharge management Surge and transient protection of circuits designed with modern semiconductors based on submicron dimension transistors This specialized design resource explores applicable fundamental elements of power sources, with numerous cited references and discussion of commercial components and manufacturers. Regardless of their previous experience level, this information will greatly aid designers, researchers, and academics who, study, design, and produce the viable new power sources needed to propel our modern electronic world. CRC Press Authors Speak Nihal Kularatna introduces his book. Watch the video