High Frequency-link Cycloconverters for Medium Voltage Grid Connection

High Frequency-link Cycloconverters for Medium Voltage Grid Connection PDF Author: Nicholas Shattock
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

High Frequency-link Cycloconverters for Medium Voltage Grid Connection

High Frequency-link Cycloconverters for Medium Voltage Grid Connection PDF Author: Nicholas Shattock
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Power Converters for Medium Voltage Networks

Power Converters for Medium Voltage Networks PDF Author: Md. Rabiul Islam
Publisher: Springer
ISBN: 3662445298
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book’s individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration technologies. Its main objective is to present the design and implementation processes for medium-voltage converters, allowing the direct grid integration of renewable power plants without the need for step-up transformers.

Emerging Power Converters for Renewable Energy and Electric Vehicles

Emerging Power Converters for Renewable Energy and Electric Vehicles PDF Author: Md. Rabiul Islam
Publisher: CRC Press
ISBN: 1000374092
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

High Power Medium Voltage DC Grid-Connected Converter for Renewable Energy Generation

High Power Medium Voltage DC Grid-Connected Converter for Renewable Energy Generation PDF Author: Wu Chen
Publisher: Springer Nature
ISBN: 9819749506
Category :
Languages : en
Pages : 188

Get Book Here

Book Description


Advanced Multilevel Converters and Applications in Grid Integration

Advanced Multilevel Converters and Applications in Grid Integration PDF Author: Ali Iftekhar Maswood
Publisher: John Wiley & Sons
ISBN: 1119475864
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the core principles of advanced multilevel converters, which require fewer components and provide higher power conversion efficiency and output power quality. The authors – noted experts in the field – explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations Provides a valid reference for further developments in the multilevel converters design issue Contains simulations files for further study Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.

High Power DC-AC and AC-DC Multilevel Converter Based on H-bridge Topology Using Improved Control Strategies

High Power DC-AC and AC-DC Multilevel Converter Based on H-bridge Topology Using Improved Control Strategies PDF Author: Haider Neamah Hashim Almahmoodi
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 171

Get Book Here

Book Description
Rising worldwide demand for energy, pressing economic constraints, and substantial environmental concerns have led to the harvesting of clean, renewable energy sources such as solar PV and wind energy. To integrate these new resources into the power grid, power electronic converters play a crucial role and have become indispensable devices. Multilevel converters are considered to be state-of-the-art, efficient solutions for medium- and high-voltage industrial applications, due to the difficulty of connecting traditional two-level converters to high- and medium-voltage grids, since the single power switch cannot stand such high voltage. The standard multilevel converter topologies, such as the neutral point clamped (NPC), flying-capacitor multilevel (FCM), and cascaded H-bridge (CHB), are currently used; however, the need for higher efficiency multilevel topologies that require the lowest number of components These benefits make the proposed. The cascade H-bridge multilevel converter topology has been the preferred solution over other standard multilevel converter topologies because each level has the same structure, with no extra clamping diodes or capacitors. Therefore, this study proposes a CHB converter with a new structure that requires fewer number of the insulated-gate bipolar transistors (IGBTs) for generating AC voltage at the output stage of the converter, using a modified phase shift pulse width modulation (PWM) control system. The reduction in the number of required IGBTs will decrease the converter cost, size, and installation area, while also improving its reliability. These benefits make the proposed topology a good candidate for renewable energy applications, especially for photovoltaic integration. The ability of the proposed inverter to generate the desired output voltage waveform has been validated through a laboratory low-power prototype. A comparative analysis with the other typologies is provided, which supports the capability of the proposed topology for reducing the number of high-frequency IGBTs and isolated DC-link. Since one of the most commonly and extensively used converter topologies in power electronics are rectifiers, a grid-connected, active front-end (AFE) rectifier based on the suggested reduced-switch-count CHB converter family is also proposed. The bidirectional capabilities of the proposed multilevel converter verified through simulation and operation in the inverting and rectifying modes. It was shown that the propose typology is able to inject the commanded active and reactive power into the grid in addition to the abilities to absorb power from the grid. The voltage-oriented control (VOC) method has been implemented on the grid-tied bidirectional multilevel converter, and simulation results verify the benefits of the new typology. The proposed converter, modulated with the selective harmonic elimination method (SHEM), has inherited complexity due to the set of nonlinear equations derived to determine the switching angles for the CHB converter with different modulation indices, voltage levels, and various harmonics selected for elimination. Therefore, a generalized solution to address total harmonic distortion (THD) is also proposed.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Sixing Du
Publisher: John Wiley & Sons
ISBN: 1119366305
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Multilevel Converters for Industrial Applications

Multilevel Converters for Industrial Applications PDF Author: Sergio Alberto Gonzalez
Publisher: CRC Press
ISBN: 1351832557
Category : Technology & Engineering
Languages : en
Pages : 245

Get Book Here

Book Description
Modern semiconductor devices have reached high current and voltage levels, and their power-handling limits can be extended if they are used in multilevel converter configurations. To create high-performance and reliable control designs, however, engineers need in-depth understanding of the characteristics and operation of these topologies. Multilevel Converters for Industrial Applications presents a thorough and comprehensive analysis of multilevel converters with a common DC voltage source. The book offers a novel perspective to help readers understand the principles of the operation of voltage-source multilevel converters as power processors, and their capabilities and limitations. The book begins with an overview of medium-voltage power converters and their applications. It then analyzes the topological characteristics of the diode-clamped multilevel converter, the flying capacitor multilevel converter, and the asymmetric cascaded multilevel converter. For each topology, the authors highlight particular control issues and design trade-offs. They also develop relevant modulation and control strategies. Numerous graphical representations aid in the analysis of the topologies and are useful for beginning the analysis of new multilevel converter topologies. The last two chapters of the book explore two case studies that analyze the behavior of the cascade asymmetric multilevel converter as a distribution static compensator and shunt active power filter, and the behavior of the diode-clamped topology configured as a back-to-back converter. These case studies demonstrate how to address the associated control problems with advanced control and modulation schemes. Examining recent advances, this book provides deep insight on the design of high-power multilevel converters and their applications. It is a valuable reference for anyone interested in medium-voltage power conversion, which is increasingly being used in industry and in renewable energy and distributed generation systems to improve efficiency and operation flexibility.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Sixing Du
Publisher: John Wiley & Sons
ISBN: 1119367239
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Single-phase Single-stage Grid-connected Converters Using High Frequency Virtually Grounded Technique

Single-phase Single-stage Grid-connected Converters Using High Frequency Virtually Grounded Technique PDF Author: King Man Siu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In the modern power grid, renewable energy has become one kind of major energy resources in the world as it is environmentally friendly and sustainable. To effectively convert the power between the ac grid and different energy sources, power electronic converters are required. They act as an interface to establish a connection between the renewable energy source and the utility grid or microgrid network. Meanwhile, the power converters are also the power interface between different electronic appliances and the ac grid. This thesis aims to research on high frequency virtually grounded technique and to develop a new set of converter topology that is with high efficiency and low leakage current performance. Different kinds of common-mode migration technique are studied in terms of system performance. By using the theory of high frequency virtually grounded technique as a foundation, the new series of converter topology family is established. According to the needs in different applications, several types of converters have been developed which is high efficiency and low leakage current. In the new converter family, a bridgeless power factor correction rectifier is studied for the general boost-type power factor correction circuit. For applications with reactive power demand, a bidirectional voltage source converter is introduced. In addition, a buck-boost-type bridgeless power factor corrector is proposed for those wide output voltage range grid-connected converter applications. Lastly, a buck-boost-type inverter is discussed in this thesis for those high efficiency wide input voltage range inverter systems. An in-depth study on the grid-connected converter topologies is provided which includes the detailed operation principles and the corresponding system stability analysis. All of the described topologies are experimentally verified which shows good agreement with the theoretical knowledge. Moreover, the performance of those converters is measured based on industrial requirements in terms of efficiency, total harmonic distortion, power factor and leakage current.