High Flux Beam Reactor Technical Specifications

High Flux Beam Reactor Technical Specifications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


The High Flux Beam Reactor at Brookhaven National Laboratory

The High Flux Beam Reactor at Brookhaven National Laboratory PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Brookhaven National Laboratory's High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want 'more'. In the mid-50's the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980

Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor.

Reactor Operations

Reactor Operations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

Reactor Operations

Reactor Operations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

HFBR Handbook, 1992

HFBR Handbook, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Get Book Here

Book Description
Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

Reactor Operations

Reactor Operations PDF Author: C. L. Osborne
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description


Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

Decommissioning of the High Flux Beam Reactor at Brookhaven Lab PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

Type A Verification Report for the High Flux Beam Reactor Stack and Grounds, Brookhaven National Laboratory, Upton, New York

Type A Verification Report for the High Flux Beam Reactor Stack and Grounds, Brookhaven National Laboratory, Upton, New York PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2X2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyz ...

Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 978

Get Book Here

Book Description