Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility Using RELAP5-3D and Generation of View Factors Using MCNP

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility Using RELAP5-3D and Generation of View Factors Using MCNP PDF Author: Huali Wu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As one of the most attractive reactor types, the High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based on the 1/16 scale experimental facility established by Texas A&M University. Also, RELAP5-3D input decks are modified to replicate the experiment procedures and the experimental results are compared with the simulation results. The results show there is a perfect match between experimental and simulation results. Radiation heat transfer dominates in the heat transfer process of high temperature gas-cooled reactor due to its high operation temperature. According to experimental research done with the RCCS facility in Texas A&M University, radiation heat transfer takes up 80% of the total heat transferred to standing pipes. In radiation heat transfer, the important parameters are view factors between surfaces. However, because of the geometrical complexity in the experimental facility, it is hard to use the numerical method or analytical view factor formula to calculate view factors. In this project, MCNP based on the Monte Carlo method is used to generate view factors for RELAP5-3D input. MCNP is powerful in setting up complicated geometry, source definition and tally application. In the end, RCCS geometry is set up using MCNP and view factors are calculated. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151265

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility Using RELAP5-3D and Generation of View Factors Using MCNP

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility Using RELAP5-3D and Generation of View Factors Using MCNP PDF Author: Huali Wu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As one of the most attractive reactor types, the High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based on the 1/16 scale experimental facility established by Texas A&M University. Also, RELAP5-3D input decks are modified to replicate the experiment procedures and the experimental results are compared with the simulation results. The results show there is a perfect match between experimental and simulation results. Radiation heat transfer dominates in the heat transfer process of high temperature gas-cooled reactor due to its high operation temperature. According to experimental research done with the RCCS facility in Texas A&M University, radiation heat transfer takes up 80% of the total heat transferred to standing pipes. In radiation heat transfer, the important parameters are view factors between surfaces. However, because of the geometrical complexity in the experimental facility, it is hard to use the numerical method or analytical view factor formula to calculate view factors. In this project, MCNP based on the Monte Carlo method is used to generate view factors for RELAP5-3D input. MCNP is powerful in setting up complicated geometry, source definition and tally application. In the end, RCCS geometry is set up using MCNP and view factors are calculated. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151265

Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy's Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

Relap5-3d Model Validation and Benchmark Exercises for Advanced Gas Cooled Reactor Application

Relap5-3d Model Validation and Benchmark Exercises for Advanced Gas Cooled Reactor Application PDF Author: Eugene James Thomas Moore
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-temperature gas-cooled reactors (HTGR) are passively safe, efficient, and economical solutions to the world's energy crisis. HTGRs are capable of generating high temperatures during normal operation, introducing design challenges related to material selection and reactor safety. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HTGRs is essential to ensure the adequacy of safety features, such as the reactor cavity cooling system (RCCS). Modeling abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark problem. The code-to-code benchmark problem models the Russian VGM reactor for pressurized and depressurized pressure vessel conditions. Temperature profiles corresponding to each condition are assigned to the pressure vessel heat structure. Experiment objectives are to calculate total thermal energy transferred to the RCCS for both cases. Qualitatively, RELAP5-3D's predictions agree closely with those of other system codes such as MORECA and Thermix. RELAP5-3D predicts that 80% of thermal energy transferred to the RCCS is radiant. Quantitatively, RELAP5-3D computes slightly higher radiant and convective heat transfer rates than other system analysis codes. Differences in convective heat transfer rate arise from the type and usage of convection models. Differences in radiant heat transfer stem from the calculation of radiation shape factors, also known as view or configuration factors. A MATLAB script employs a set of radiation shape factor correlations and applies them to the RELAP5-3D model. This same script is used to generate radiation shape factors for the code-to-experiment benchmark problem, which uses the Japanese HTTR reactor to determine temperature along the outside of the pressure vessel. Despite lacking information on material properties, emissivities, and initial conditions, RELAP5-3D temperature trend predictions closely match those of other system codes. Compared to experimental measurements, however, RELAP5-3D cannot capture fluid behavior above the pressure vessel. While qualitatively agreeing over the pressure vessel body, RELAP5-3D predictions diverge from experimental measurements elsewhere. This difference reflects the limitations of using a system analysis code where computational fluid dynamics codes are better suited.

Experimental and Computational Study of a Scaled Reactor Cavity Cooling System

Experimental and Computational Study of a Scaled Reactor Cavity Cooling System PDF Author: Rodolfo Vaghetto
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Very High Temperature Gas-Cooled Reactor (VHTR) is one of the next generation nuclear reactors designed to achieve high temperatures to support industrial applications and power generation. The Reactor Cavity Cooling System (RCCS) is a passive safety system that will be incorporated in the VTHR, designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The overall behavior of the facility met the expectations. The steady-state condition was achieved and the facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation. The experimental data produced during the steady-state run were successfully compared with the simulation results obtained using RELAP5-3D, confirming the capabilities of the system code of simulating the thermal-hydraulic phenomena occurring in the reactor cavity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151742

Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I

Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 185

Get Book Here

Book Description
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

1D and 3D Simulation of a Water-cooled Reactor Cavity Cooling System Experimental Facility

1D and 3D Simulation of a Water-cooled Reactor Cavity Cooling System Experimental Facility PDF Author:
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 323

Get Book Here

Book Description
Natural circulation -- Reactor cavity cooling system -- 1D systems CFD -- 3D CFD -- 1D/3D coupling -- Natuurlike sirkulasie -- Reaktor ruimte verkoeling stelsel -- 1D stelsel berekenings vloei dinamika -- 3D berekenings vloei dinamika -- 1D/3D koppeling.

Thermal Hydraulic Analysis of University of Wisconsin-Madison's Experimental Air-cooled Reactor Cavity Cooling System Using RELAP5

Thermal Hydraulic Analysis of University of Wisconsin-Madison's Experimental Air-cooled Reactor Cavity Cooling System Using RELAP5 PDF Author: Donghyun Suh
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description


Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools PDF Author: Angelo Frisani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The commercial Computational Fluid Dynamics (CFD) STAR-CCM+/ V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. Two models were developed to analyze heat exchange in the RCCS. Both models incorporate a 180 degree section resembling the VHTR RCCS bench table test facility performed at Texas A & M University. All the key features of the experimental facility were taken into account during the numerical simulations. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls temperature below design limits. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The models considered included the first-moment closure one equation Spalart-Allmaras model, the first-moment closure two-equation k-e and k-w models and the second-moment closure Reynolds Stress Transport (RST) model. For the near wall treatments, the low y+ and the all y+ wall treatments were considered. The two-layer model was also used to investigate the effect of near-wall treatment. The comparison of the experimental data with the simulations showed a satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. The tested turbulence models demonstrated that the Realizable k-e model with two-layer all y+ wall treatment performs better than the other k-e models for such a complicated geometry and flow conditions. Results are in satisfactory agreement with the RST simulations and experimental data available. A scaling analysis was developed to address the distortion introduced by the experimental facility and CFD model in simulating the physics inside the RCCS system with respect to the real plant configuration. The scaling analysis demonstrated that both the experimental facility and CFD model give a satisfactory reproduction of the main flow characteristics inside the RCCS cavity region, with convection and radiation heat exchange phenomena being properly scaled from the real plant to the model analyzed.

Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor

Reactor Cavity Cooling System Heat Removal Analysis for a High Temperature Gas Cooled Reactor PDF Author: Hong-Chan Wei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: The HTR-10 is a small high temperature gas-cooled reactor. It is an experimental pebble-bed helium cooled reactor with a maximum power of 10 MW, constructed between 2000 and 2003 in China. The study focuses on the thermal-fluid analysis of the Reactor Cavity Cooling System (RCCS) with water flows up the pipes to cool the containment. Computational fluid dynamics (CFD) is used to study local heat transfer phenomena in the HTR-10 containment. Heat is transferred to the RCCS mainly via radiation, and to a lesser extent via natural convection. CFD allows for detailed modeling of both heat transfer modes. Sensitivity analyses on the computational grid and the physics models are performed to optimize the simulation. This leads to the use of the k-[omega] model for turbulence and Discrete Ordinates model for radiation. A 2D axisymmetric model is developed to simulate two scenarios from the HTR-10 benchmark exercises provided in the IAEA Coordinated Research Program (CRP-3). The first is a heat up experiment at a reactor power of 200 kW. The experiment simulates normal operation at low power and aims at verifying the RCCS heat removal capability under steady-state conditions. The second is a transient depressurized loss of heat sink accident. In this situation, the reactor is assumed to be running initially at full power, and then the temperature of the core barrel rises over the next 40 hours, peaks, and falls over the next 72 hours. Three fluids are modeled: the helium inside the pressure vessel and outside the core vessel, air in the containment, and water in the RCCS. The boundary conditions are a temperature profile on the core barrel and adiabatic conditions on the containment walls. The simulations lead to safe values of temperature for all the reactor components; also, the computed temperatures compare well with previous simulations performed for the CRP-3.

Topical Report

Topical Report PDF Author: Nuclear Engineering Division
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R & D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R & D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R & D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong 3-D effects result in large heat flux, temperature, and heat transfer variations around the tube wall; (b) there is a large difference in the heat transfer coefficient predicted by turbulence models and heat transfer correlations, and this underscores the need of experimental work to validate the thermal performance of the RCCS; and (c) tests at the NSTF would embody all important fluid flow and heat transfer phenomena in the RCCS, in addition to covering the entire parameter ranges that characterize these phenomena. Additional supporting scaling study results are available in Reference 2. The purpose of this work is to develop a high-level engineering plan for mechanical and instrumentation modifications to NSTF in order to meet the following two technical objectives: (1) provide CFD and system-level code development and validation data for the RCCS under prototypic (full-scale) natural convection flow conditions, and (2) support RCCS design validation and optimization. As background for this work, the report begins by providing a summary of the original NSTF design and operational capabilities. Since the facility has not been actively utilized since the early 1990's, the next step is to assess the current facility status. With this background material in place, the data needs and requirements for the facility are then defined on the basis of supporting analysis activities. With the requirements for the facility established, appropriate mechanical and instrumentation modifications to NSTF are then developed in order to meet the overall project objectives. A cost and schedule for modifying the facility to satisfy the RCCS data needs is then provided.