Author: Amos Richmond
Publisher: John Wiley & Sons
ISBN: 1405172495
Category : Technology & Engineering
Languages : en
Pages : 587
Book Description
Handbook of Microalgal Culture is truly a landmarkpublication, drawing on some 50 years of worldwide experience inmicroalgal mass culture. This important book comprisescomprehensive reviews of the current available information onmicroalgal culture, written by 40 contributing authors from aroundthe globe. The book is divided into four parts, with Part I detailingbiological and environmental aspects of microalgae with referenceto microalgal biotechnology and Part II looking in depth at majortheories and techniques of mass cultivation. Part III compriseschapters on the economic applications of microalgae, includingcoverage of industrial production, the use of microalgae in humanand animal nutrition and in aquaculture, in nitrogen fixation,hydrogen and methane production, and in bioremediation of pollutedwater. Finally, Part IV looks at new frontiers and includeschapters on genetic engineering, microalgae as platforms forrecombinant proteins, bioactive chemicals, heterotrophicproduction, microalgae as gene-delivery systems for expressingmosquitocidal toxins and the enhancement of marine productivity forclimate stabilization and food security. Handbook of Microalgal Culture is an essential purchasefor all phycologists and also those researching aquatic systems,aquaculture and plant sciences. There is also much of great use toresearchers and those involved in product formulation withinpharmaceutical, nutrition and food companies. Libraries in alluniversities and research establishments teaching and researchingin chemistry, biological and pharmaceutical sciences, food sciencesand nutrition, and aquaculture will need copies of this book ontheir shelves. Amos Richmond is at the Blaustein Institute for DesertResearch, Ben-Gurion University of the Negev, Israel.
Handbook of Microalgal Culture
Author: Amos Richmond
Publisher: John Wiley & Sons
ISBN: 1405172495
Category : Technology & Engineering
Languages : en
Pages : 587
Book Description
Handbook of Microalgal Culture is truly a landmarkpublication, drawing on some 50 years of worldwide experience inmicroalgal mass culture. This important book comprisescomprehensive reviews of the current available information onmicroalgal culture, written by 40 contributing authors from aroundthe globe. The book is divided into four parts, with Part I detailingbiological and environmental aspects of microalgae with referenceto microalgal biotechnology and Part II looking in depth at majortheories and techniques of mass cultivation. Part III compriseschapters on the economic applications of microalgae, includingcoverage of industrial production, the use of microalgae in humanand animal nutrition and in aquaculture, in nitrogen fixation,hydrogen and methane production, and in bioremediation of pollutedwater. Finally, Part IV looks at new frontiers and includeschapters on genetic engineering, microalgae as platforms forrecombinant proteins, bioactive chemicals, heterotrophicproduction, microalgae as gene-delivery systems for expressingmosquitocidal toxins and the enhancement of marine productivity forclimate stabilization and food security. Handbook of Microalgal Culture is an essential purchasefor all phycologists and also those researching aquatic systems,aquaculture and plant sciences. There is also much of great use toresearchers and those involved in product formulation withinpharmaceutical, nutrition and food companies. Libraries in alluniversities and research establishments teaching and researchingin chemistry, biological and pharmaceutical sciences, food sciencesand nutrition, and aquaculture will need copies of this book ontheir shelves. Amos Richmond is at the Blaustein Institute for DesertResearch, Ben-Gurion University of the Negev, Israel.
Publisher: John Wiley & Sons
ISBN: 1405172495
Category : Technology & Engineering
Languages : en
Pages : 587
Book Description
Handbook of Microalgal Culture is truly a landmarkpublication, drawing on some 50 years of worldwide experience inmicroalgal mass culture. This important book comprisescomprehensive reviews of the current available information onmicroalgal culture, written by 40 contributing authors from aroundthe globe. The book is divided into four parts, with Part I detailingbiological and environmental aspects of microalgae with referenceto microalgal biotechnology and Part II looking in depth at majortheories and techniques of mass cultivation. Part III compriseschapters on the economic applications of microalgae, includingcoverage of industrial production, the use of microalgae in humanand animal nutrition and in aquaculture, in nitrogen fixation,hydrogen and methane production, and in bioremediation of pollutedwater. Finally, Part IV looks at new frontiers and includeschapters on genetic engineering, microalgae as platforms forrecombinant proteins, bioactive chemicals, heterotrophicproduction, microalgae as gene-delivery systems for expressingmosquitocidal toxins and the enhancement of marine productivity forclimate stabilization and food security. Handbook of Microalgal Culture is an essential purchasefor all phycologists and also those researching aquatic systems,aquaculture and plant sciences. There is also much of great use toresearchers and those involved in product formulation withinpharmaceutical, nutrition and food companies. Libraries in alluniversities and research establishments teaching and researchingin chemistry, biological and pharmaceutical sciences, food sciencesand nutrition, and aquaculture will need copies of this book ontheir shelves. Amos Richmond is at the Blaustein Institute for DesertResearch, Ben-Gurion University of the Negev, Israel.
Handbook of Microalgal Culture
Author: Amos Richmond
Publisher: John Wiley & Sons
ISBN: 1118567196
Category : Technology & Engineering
Languages : en
Pages : 1148
Book Description
Algae are some of the fastest growing organisms in the world, with up to 90% of their weight made up from carbohydrate, protein and oil. As well as these macromolecules, microalgae are also rich in other high-value compounds, such as vitamins, pigments, and biologically active compounds, All these compounds can be extracted for use by the cosmetics, pharmaceutical, nutraceutical, and food industries, and the algae itself can be used for feeding of livestock, in particular fish, where on-going research is dedicated to increasing the percentage of fish and shellfish feed not derived from fish meal. Microalgae are also applied to wastewater bioremediation and carbon capture from industrial flue gases, and can be used as organic fertilizer. So far, only a few species of microalgae, including cyanobacteria, are under mass cultivation. The potential for expansion is enormous, considering the existing hundreds of thousands of species and subspecies, in which a large gene-pool offers a significant potential for many new producers. Completely revised, updated and expanded, and with the inclusion of new Editor, Qiang Hu of Arizona State University, the second edition of this extremely important book contains 37 chapters. Nineteen of these chapters are written by new authors, introducing many advanced and emerging technologies and applications such as novel photobioreactors, mass cultivation of oil-bearing microalgae for biofuels, exploration of naturally occurring and genetically engineered microalgae as cell factories for high-value chemicals, and techno-economic analysis of microalgal mass culture. This excellent new edition also contains details of the biology and large-scale culture of several economically important and newly-exploited microalgae, including Botryococcus, Chlamydomonas, Nannochloropsis, Nostoc, Chlorella, Spirulina, Haematococcus, and Dunaniella species/strains. Edited by Amos Richmond and Qiang Hu, each with a huge wealth of experience in microalgae, its culture, and biotechnology, and drawing together contributions from experts around the globe, this thorough and comprehensive new edition is an essential purchase for all those involved with microalgae, their culture, processing and use. Biotechnologists, bioengineers, phycologists, pharmaceutical, biofuel and fish-feed industry personnel and biological scientists and students will all find a vast amount of cutting-edge information within this Second Edition. Libraries in all universities where biological sciences, biotechnology and aquaculture are studied and taught should all have copies of this landmark new edition on their shelves.
Publisher: John Wiley & Sons
ISBN: 1118567196
Category : Technology & Engineering
Languages : en
Pages : 1148
Book Description
Algae are some of the fastest growing organisms in the world, with up to 90% of their weight made up from carbohydrate, protein and oil. As well as these macromolecules, microalgae are also rich in other high-value compounds, such as vitamins, pigments, and biologically active compounds, All these compounds can be extracted for use by the cosmetics, pharmaceutical, nutraceutical, and food industries, and the algae itself can be used for feeding of livestock, in particular fish, where on-going research is dedicated to increasing the percentage of fish and shellfish feed not derived from fish meal. Microalgae are also applied to wastewater bioremediation and carbon capture from industrial flue gases, and can be used as organic fertilizer. So far, only a few species of microalgae, including cyanobacteria, are under mass cultivation. The potential for expansion is enormous, considering the existing hundreds of thousands of species and subspecies, in which a large gene-pool offers a significant potential for many new producers. Completely revised, updated and expanded, and with the inclusion of new Editor, Qiang Hu of Arizona State University, the second edition of this extremely important book contains 37 chapters. Nineteen of these chapters are written by new authors, introducing many advanced and emerging technologies and applications such as novel photobioreactors, mass cultivation of oil-bearing microalgae for biofuels, exploration of naturally occurring and genetically engineered microalgae as cell factories for high-value chemicals, and techno-economic analysis of microalgal mass culture. This excellent new edition also contains details of the biology and large-scale culture of several economically important and newly-exploited microalgae, including Botryococcus, Chlamydomonas, Nannochloropsis, Nostoc, Chlorella, Spirulina, Haematococcus, and Dunaniella species/strains. Edited by Amos Richmond and Qiang Hu, each with a huge wealth of experience in microalgae, its culture, and biotechnology, and drawing together contributions from experts around the globe, this thorough and comprehensive new edition is an essential purchase for all those involved with microalgae, their culture, processing and use. Biotechnologists, bioengineers, phycologists, pharmaceutical, biofuel and fish-feed industry personnel and biological scientists and students will all find a vast amount of cutting-edge information within this Second Edition. Libraries in all universities where biological sciences, biotechnology and aquaculture are studied and taught should all have copies of this landmark new edition on their shelves.
Handbook of Microalgal Mass Culture (1986)
Author: Amos Richmond
Publisher: CRC Press
ISBN: 1351362704
Category : Science
Languages : en
Pages : 537
Book Description
This handbook is devoted to the mass production of microalgae, and in my part, is based on some 10 years of experience in growing and studying microalgal cultures maintained at high polulation densities under laboratory conditions and in outdoor ponds
Publisher: CRC Press
ISBN: 1351362704
Category : Science
Languages : en
Pages : 537
Book Description
This handbook is devoted to the mass production of microalgae, and in my part, is based on some 10 years of experience in growing and studying microalgal cultures maintained at high polulation densities under laboratory conditions and in outdoor ponds
Handbook of Marine Macroalgae
Author: Se-Kwon Kim
Publisher: John Wiley & Sons
ISBN: 1119977657
Category : Science
Languages : en
Pages : 871
Book Description
The Handbook of Macroalgae: Biotechnology and Applied Phycology describes the biological, biotechnological and the industrial applications of seaweeds. Vast research into the cultivation of seaweeds is currently being undertaken but there is a lack of methodological strategies in place to develop novel drugs from these sources. This book aims to rectify this situation, providing an important review of recent advances and potential new applications for macroalgae. Focusing on the chemical and structural nature of seaweeds the book brings the potentially valuable bioactive nature to the fore. Novel compounds isolated from seaweeds are reviewed to provide an invaluable reference for anyone working in the field.
Publisher: John Wiley & Sons
ISBN: 1119977657
Category : Science
Languages : en
Pages : 871
Book Description
The Handbook of Macroalgae: Biotechnology and Applied Phycology describes the biological, biotechnological and the industrial applications of seaweeds. Vast research into the cultivation of seaweeds is currently being undertaken but there is a lack of methodological strategies in place to develop novel drugs from these sources. This book aims to rectify this situation, providing an important review of recent advances and potential new applications for macroalgae. Focusing on the chemical and structural nature of seaweeds the book brings the potentially valuable bioactive nature to the fore. Novel compounds isolated from seaweeds are reviewed to provide an invaluable reference for anyone working in the field.
Handbook of Microalgal Mass Culture
Author: Amos Richmond
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
Handbook of Microalgae-Based Processes and Products
Author: Eduardo Jacob-Lopes
Publisher: Academic Press
ISBN: 0128185376
Category : Technology & Engineering
Languages : en
Pages : 938
Book Description
The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.
Publisher: Academic Press
ISBN: 0128185376
Category : Technology & Engineering
Languages : en
Pages : 938
Book Description
The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.
Photosynthetic Prokaryotes
Author: Nicholas H. Mann
Publisher: Springer Science & Business Media
ISBN: 1475713320
Category : Science
Languages : en
Pages : 284
Book Description
Considers the features common to bacteria that need light to grow, focusing on those features important in nature and useful in industrial applications. Because the species are scattered across the taxonomic chart, they have little in common except the physiology of photosynthesis and ecological dis
Publisher: Springer Science & Business Media
ISBN: 1475713320
Category : Science
Languages : en
Pages : 284
Book Description
Considers the features common to bacteria that need light to grow, focusing on those features important in nature and useful in industrial applications. Because the species are scattered across the taxonomic chart, they have little in common except the physiology of photosynthesis and ecological dis
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications
Author: David J. Suggett
Publisher: Springer Science & Business Media
ISBN: 9048192684
Category : Science
Languages : en
Pages : 332
Book Description
Measurements of variable chlorophyll fluorescence have revolutionised global research of photosynthetic bacteria, algae and plants and in turn assessment of the status of aquatic ecosystems, a success that has partly been facilitated by the widespread commercialisation of a suite of chlorophyll fluorometers designed for almost every application in lakes, rivers and oceans. Numerous publications have been produced as researchers and assessors have simultaneously sought to optimise protocols and practices for key organisms or water bodies; however, such parallel efforts have led to difficulties in reconciling processes and patterns across the aquatic sciences. This book follows on from the first international conference on “chlorophyll fluorescence in the aquatic sciences” (AQUAFLUO 2007): to bridge the gaps between the concept, measurement and application of chlorophyll fluorescence through the synthesis and integration of current knowledge from leading researchers and assessors as well as instrument manufacturers.
Publisher: Springer Science & Business Media
ISBN: 9048192684
Category : Science
Languages : en
Pages : 332
Book Description
Measurements of variable chlorophyll fluorescence have revolutionised global research of photosynthetic bacteria, algae and plants and in turn assessment of the status of aquatic ecosystems, a success that has partly been facilitated by the widespread commercialisation of a suite of chlorophyll fluorometers designed for almost every application in lakes, rivers and oceans. Numerous publications have been produced as researchers and assessors have simultaneously sought to optimise protocols and practices for key organisms or water bodies; however, such parallel efforts have led to difficulties in reconciling processes and patterns across the aquatic sciences. This book follows on from the first international conference on “chlorophyll fluorescence in the aquatic sciences” (AQUAFLUO 2007): to bridge the gaps between the concept, measurement and application of chlorophyll fluorescence through the synthesis and integration of current knowledge from leading researchers and assessors as well as instrument manufacturers.
Cultivation Of Microalgae
Author: Bruno Augusto Amato Borges
Publisher: Delve Publishing
ISBN: 9781773610405
Category : Algae culture
Languages : en
Pages : 0
Book Description
Algae are recognized as one of the oldest life-forms (Falkowski & Raven, 1997). The use of microalgae dates back around 2000 years to the Chinese, who used Nostoc to survive during famine (Spolaore et al., 2006), and to the Aztecs who collected and cultivated Spirulina (Henrikson, 2011). For the past 50 years, extensive research has been performed on microalgae and how they can be used in a wide variety of processes or to manufacture many practical and economic important products. This group of individuals is present in several ecosystems, representing a big variety of species living in a wide range of environmental conditions. Microalgae can be autotrophic or heterotrophic; the autotrophic require only inorganic compounds such as CO2, salts and a light energy source for growth; the heterotrophic are nonphotosynthetic, therefore require an external source of organic compounds as well as nutrients as an energy source (Brennan & Owende, 2009). The cultivation of microalgae is an activity that offers high productivity in dry biomass, compared the production of seaweeds. One important advantage of the cultivation of microalgae is that it can be performed in various locations, due to the use of closed systems of cultivation. In addition, can generate crops throughout the year and has high photosynthetic efficiency and bioremediation potential. There are several groups of individuals who are part of the large group of microalgae; so many differences can be identified with respect to chemical and biological composition of each. Actually, the main genres worldwide cultured are Skeletonema, Thalassiosira, Nannochloropsis, Phaeodactylum, Chaetoceros, Isochrysis, Tetraselmis, Chlamydomonas, Dunaliella and Spirulina. One of the great advantages present in the cultivation of microalgae is the positive appeal to your benefits with regard to the environment. This production plays in a variety of ways to promote sustainability. Microalgae biomass has been proven as a sustainable feedstock for biofuels, feed and numerous value added products that involves nutraceuticals and therapeutic industry (Guldhe, 2016). Microalgae are a highly renewable resource. It can be grown and harvested all year round, in several environments. Production is low impact - microalgae cultivation needs no chemicals or pesticides, in addition to require no deforestation. Knowing the many uses and importance of these organisms to the different sectors of the industry, and your environmental importance, it is essential to maintain the targeted efforts in pursuit of the development of new technologies and applications, as well as improvements in cropping systems and processes used currently.
Publisher: Delve Publishing
ISBN: 9781773610405
Category : Algae culture
Languages : en
Pages : 0
Book Description
Algae are recognized as one of the oldest life-forms (Falkowski & Raven, 1997). The use of microalgae dates back around 2000 years to the Chinese, who used Nostoc to survive during famine (Spolaore et al., 2006), and to the Aztecs who collected and cultivated Spirulina (Henrikson, 2011). For the past 50 years, extensive research has been performed on microalgae and how they can be used in a wide variety of processes or to manufacture many practical and economic important products. This group of individuals is present in several ecosystems, representing a big variety of species living in a wide range of environmental conditions. Microalgae can be autotrophic or heterotrophic; the autotrophic require only inorganic compounds such as CO2, salts and a light energy source for growth; the heterotrophic are nonphotosynthetic, therefore require an external source of organic compounds as well as nutrients as an energy source (Brennan & Owende, 2009). The cultivation of microalgae is an activity that offers high productivity in dry biomass, compared the production of seaweeds. One important advantage of the cultivation of microalgae is that it can be performed in various locations, due to the use of closed systems of cultivation. In addition, can generate crops throughout the year and has high photosynthetic efficiency and bioremediation potential. There are several groups of individuals who are part of the large group of microalgae; so many differences can be identified with respect to chemical and biological composition of each. Actually, the main genres worldwide cultured are Skeletonema, Thalassiosira, Nannochloropsis, Phaeodactylum, Chaetoceros, Isochrysis, Tetraselmis, Chlamydomonas, Dunaliella and Spirulina. One of the great advantages present in the cultivation of microalgae is the positive appeal to your benefits with regard to the environment. This production plays in a variety of ways to promote sustainability. Microalgae biomass has been proven as a sustainable feedstock for biofuels, feed and numerous value added products that involves nutraceuticals and therapeutic industry (Guldhe, 2016). Microalgae are a highly renewable resource. It can be grown and harvested all year round, in several environments. Production is low impact - microalgae cultivation needs no chemicals or pesticides, in addition to require no deforestation. Knowing the many uses and importance of these organisms to the different sectors of the industry, and your environmental importance, it is essential to maintain the targeted efforts in pursuit of the development of new technologies and applications, as well as improvements in cropping systems and processes used currently.
Photosynthesis and Production in a Changing Environment
Author: D.O. Hall
Publisher: Springer Science & Business Media
ISBN: 9401115664
Category : Science
Languages : en
Pages : 503
Book Description
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text,· so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. · In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area.
Publisher: Springer Science & Business Media
ISBN: 9401115664
Category : Science
Languages : en
Pages : 503
Book Description
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text,· so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. · In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area.