Author: John B. Garnett
Publisher: Cambridge University Press
ISBN: 9780521470186
Category : Mathematics
Languages : en
Pages : 608
Book Description
An introduction to harmonic measure on plane domains and careful discussion of the work of Makarov, Carleson, Jones and others.
Harmonic Measure
Author: John B. Garnett
Publisher: Cambridge University Press
ISBN: 9780521470186
Category : Mathematics
Languages : en
Pages : 608
Book Description
An introduction to harmonic measure on plane domains and careful discussion of the work of Makarov, Carleson, Jones and others.
Publisher: Cambridge University Press
ISBN: 9780521470186
Category : Mathematics
Languages : en
Pages : 608
Book Description
An introduction to harmonic measure on plane domains and careful discussion of the work of Makarov, Carleson, Jones and others.
Harmonic Measure
Author: Luca Capogna
Publisher: American Mathematical Soc.
ISBN: 0821827286
Category : Mathematics
Languages : en
Pages : 170
Book Description
Recent developments in geometric measure theory and harmonic analysis have led to new and deep results concerning the regularity of the support of measures which behave "asymptotically" (for balls of small radius) as the Euclidean volume. A striking feature of these results is that they actually characterize flatness of the support in terms of the asymptotic behavior of the measure. Such characterizations have led to important new progress in the study of harmonic measure fornon-smooth domains. This volume provides an up-to-date overview and an introduction to the research literature in this area. The presentation follows a series of five lectures given by Carlos Kenig at the 2000 Arkansas Spring Lecture Series. The original lectures have been expanded and updated to reflectthe rapid progress in this field. A chapter on the planar case has been added to provide a historical perspective. Additional background has been included to make the material accessible to advanced graduate students and researchers in harmonic analysis and geometric measure theory.
Publisher: American Mathematical Soc.
ISBN: 0821827286
Category : Mathematics
Languages : en
Pages : 170
Book Description
Recent developments in geometric measure theory and harmonic analysis have led to new and deep results concerning the regularity of the support of measures which behave "asymptotically" (for balls of small radius) as the Euclidean volume. A striking feature of these results is that they actually characterize flatness of the support in terms of the asymptotic behavior of the measure. Such characterizations have led to important new progress in the study of harmonic measure fornon-smooth domains. This volume provides an up-to-date overview and an introduction to the research literature in this area. The presentation follows a series of five lectures given by Carlos Kenig at the 2000 Arkansas Spring Lecture Series. The original lectures have been expanded and updated to reflectthe rapid progress in this field. A chapter on the planar case has been added to provide a historical perspective. Additional background has been included to make the material accessible to advanced graduate students and researchers in harmonic analysis and geometric measure theory.
Conformal and Harmonic Measures on Laminations Associated with Rational Maps
Author: Vadim A. Kaimanovich
Publisher: American Mathematical Soc.
ISBN: 0821836153
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse ``conformal streams'' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the ``Anosov--Sinai cocycle'', the corresponding ``basic cohomology class'' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$. A number of related geometric objects on laminations -- in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion -- are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97]. Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).
Publisher: American Mathematical Soc.
ISBN: 0821836153
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse ``conformal streams'' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the ``Anosov--Sinai cocycle'', the corresponding ``basic cohomology class'' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$. A number of related geometric objects on laminations -- in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion -- are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97]. Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).
Metric Properties of Harmonic Measures
Author: V. Totik
Publisher: American Mathematical Soc.
ISBN: 0821839942
Category : Mathematics
Languages : en
Pages : 178
Book Description
Introduction Metric properties of harmonic measures, Green functions and equilibrium measures Sharpness Higher order smoothness Cantor-type sets Phargmen-Lindelof type theorems Markov and Bernstein type inequalities Fast decreasing polynomials Remez and Schur type inequalities Approximation on compact sets Appendix References List of symbols List of figures Index
Publisher: American Mathematical Soc.
ISBN: 0821839942
Category : Mathematics
Languages : en
Pages : 178
Book Description
Introduction Metric properties of harmonic measures, Green functions and equilibrium measures Sharpness Higher order smoothness Cantor-type sets Phargmen-Lindelof type theorems Markov and Bernstein type inequalities Fast decreasing polynomials Remez and Schur type inequalities Approximation on compact sets Appendix References List of symbols List of figures Index
Probability and Phase Transition
Author: G.R. Grimmett
Publisher: Springer Science & Business Media
ISBN: 9780792327202
Category : Language Arts & Disciplines
Languages : en
Pages : 350
Book Description
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
Publisher: Springer Science & Business Media
ISBN: 9780792327202
Category : Language Arts & Disciplines
Languages : en
Pages : 350
Book Description
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
Beijing Lectures in Harmonic Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 9780691084190
Category : Mathematics
Languages : en
Pages : 444
Book Description
Based on seven lecture series given by leading experts at a summer school at Peking University, in Beijing, in 1984. this book surveys recent developments in the areas of harmonic analysis most closely related to the theory of singular integrals, real-variable methods, and applications to several complex variables and partial differential equations. The different lecture series are closely interrelated; each contains a substantial amount of background material, as well as new results not previously published. The contributors to the volume are R. R. Coifman and Yves Meyer, Robert Fcfferman, Carlos K. Kenig, Steven G. Krantz, Alexander Nagel, E. M. Stein, and Stephen Wainger.
Publisher: Princeton University Press
ISBN: 9780691084190
Category : Mathematics
Languages : en
Pages : 444
Book Description
Based on seven lecture series given by leading experts at a summer school at Peking University, in Beijing, in 1984. this book surveys recent developments in the areas of harmonic analysis most closely related to the theory of singular integrals, real-variable methods, and applications to several complex variables and partial differential equations. The different lecture series are closely interrelated; each contains a substantial amount of background material, as well as new results not previously published. The contributors to the volume are R. R. Coifman and Yves Meyer, Robert Fcfferman, Carlos K. Kenig, Steven G. Krantz, Alexander Nagel, E. M. Stein, and Stephen Wainger.
Function Theory of Several Complex Variables
Author: Steven George Krantz
Publisher: American Mathematical Soc.
ISBN: 0821827243
Category : Mathematics
Languages : en
Pages : 586
Book Description
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821827243
Category : Mathematics
Languages : en
Pages : 586
Book Description
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Harmonic Analysis and Partial Differential Equations
Author: Mario Milman
Publisher: American Mathematical Soc.
ISBN: 0821851136
Category : Mathematics
Languages : en
Pages : 144
Book Description
Illuminates the relationship between harmonic analysis and partial differential equations. This book covers topics such as application of fully nonlinear, uniformly elliptic equations to the Monge Ampere equation; and estimates for Green functions for the purpose of studying Dirichlet problems for operators in non-divergence form.
Publisher: American Mathematical Soc.
ISBN: 0821851136
Category : Mathematics
Languages : en
Pages : 144
Book Description
Illuminates the relationship between harmonic analysis and partial differential equations. This book covers topics such as application of fully nonlinear, uniformly elliptic equations to the Monge Ampere equation; and estimates for Green functions for the purpose of studying Dirichlet problems for operators in non-divergence form.
Complex Analysis
Author: Mario Gonzalez
Publisher: CRC Press
ISBN: 9780824784164
Category : Mathematics
Languages : en
Pages : 552
Book Description
A selection of some important topics in complex analysis, intended as a sequel to the author's Classical complex analysis (see preceding entry). The five chapters are devoted to analytic continuation; conformal mappings, univalent functions, and nonconformal mappings; entire function; meromorphic fu
Publisher: CRC Press
ISBN: 9780824784164
Category : Mathematics
Languages : en
Pages : 552
Book Description
A selection of some important topics in complex analysis, intended as a sequel to the author's Classical complex analysis (see preceding entry). The five chapters are devoted to analytic continuation; conformal mappings, univalent functions, and nonconformal mappings; entire function; meromorphic fu
The Location of Critical Points of Analytic and Harmonic Functions
Author: Joseph Leonard Walsh
Publisher: American Mathematical Soc.
ISBN: 0821846434
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is concerned with the critical points of analytic and harmonic functions. A critical point of an analytic function means a zero of its derivative, and a critical point of a harmonic function means a point where both partial derivatives vanish. The analytic functions considered are largely polynomials, rational functions, and certain periodic, entire, and meromorphic functions. The harmonic functions considered are largely Green's functions, harmonic measures, and various linear combinations of them. The interest in these functions centers around the approximate location of their critical points. The approximation is in the sense of determining minimal regions in which all the critical points lie or maximal regions in which no critical point lies. Throughout the book the author uses the single method of regarding the critical points as equilibrium points in fields of force due to suitable distribution of matter. The exposition is clear, complete, and well-illustrated with many examples.
Publisher: American Mathematical Soc.
ISBN: 0821846434
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is concerned with the critical points of analytic and harmonic functions. A critical point of an analytic function means a zero of its derivative, and a critical point of a harmonic function means a point where both partial derivatives vanish. The analytic functions considered are largely polynomials, rational functions, and certain periodic, entire, and meromorphic functions. The harmonic functions considered are largely Green's functions, harmonic measures, and various linear combinations of them. The interest in these functions centers around the approximate location of their critical points. The approximation is in the sense of determining minimal regions in which all the critical points lie or maximal regions in which no critical point lies. Throughout the book the author uses the single method of regarding the critical points as equilibrium points in fields of force due to suitable distribution of matter. The exposition is clear, complete, and well-illustrated with many examples.