Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering

Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering PDF Author: Kim, Dookie
Publisher: IGI Global
ISBN: 1522547673
Category : Technology & Engineering
Languages : en
Pages : 644

Get Book Here

Book Description
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.

Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering

Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering PDF Author: Kim, Dookie
Publisher: IGI Global
ISBN: 1522547673
Category : Technology & Engineering
Languages : en
Pages : 644

Get Book Here

Book Description
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.

Soft Computing

Soft Computing PDF Author: Mangey Ram
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110625717
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering.

Handbook of Research on Modeling, Analysis, and Control of Complex Systems

Handbook of Research on Modeling, Analysis, and Control of Complex Systems PDF Author: Azar, Ahmad Taher
Publisher: IGI Global
ISBN: 1799857905
Category : Mathematics
Languages : en
Pages : 685

Get Book Here

Book Description
The current literature on dynamic systems is quite comprehensive, and system theory’s mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.

Predictive Modelling for Energy Management and Power Systems Engineering

Predictive Modelling for Energy Management and Power Systems Engineering PDF Author: Ravinesh Deo
Publisher: Elsevier
ISBN: 012817773X
Category : Technology & Engineering
Languages : en
Pages : 553

Get Book Here

Book Description
Predictive Modeling for Energy Management and Power Systems Engineering introduces readers to the cutting-edge use of big data and large computational infrastructures in energy demand estimation and power management systems. The book supports engineers and scientists who seek to become familiar with advanced optimization techniques for power systems designs, optimization techniques and algorithms for consumer power management, and potential applications of machine learning and artificial intelligence in this field. The book provides modeling theory in an easy-to-read format, verified with on-site models and case studies for specific geographic regions and complex consumer markets. - Presents advanced optimization techniques to improve existing energy demand system - Provides data-analytic models and their practical relevance in proven case studies - Explores novel developments in machine-learning and artificial intelligence applied in energy management - Provides modeling theory in an easy-to-read format

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Stochastic Modeling

Stochastic Modeling PDF Author: Hossein Bonakdari
Publisher: Elsevier
ISBN: 0323972756
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software allows for new avenues in time series analysis and predictive modeling which summarize more than ten years of experience in the application of stochastic models in environmental problems. The book introduces a variety of different topics in time series in the modeling and prediction of complex environmental systems. Most importantly, all codes are user-friendly and readers will be able to use them for their cases. Users who may not be familiar with MATLAB software can also refer to the appendix. This book also guides the reader step-by-step to learn developed codes for time series modeling, provides required toolboxes, explains concepts, and applies different tools for different types of environmental time series problems. - Provides video tutorials on the use of codes - Includes a companion site with 3,000 lines of programming, 70 principal codes and 100 pseudo codes - Highlights multiple methods to Illustrate each problem

Handbook of Machine Learning Applications for Genomics

Handbook of Machine Learning Applications for Genomics PDF Author: Sanjiban Sekhar Roy
Publisher: Springer Nature
ISBN: 9811691584
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Nature-Inspired Algorithms for Big Data Frameworks

Nature-Inspired Algorithms for Big Data Frameworks PDF Author: Banati, Hema
Publisher: IGI Global
ISBN: 1522558535
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
As technology continues to become more sophisticated, mimicking natural processes and phenomena becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Algorithms for Big Data Frameworks is a collection of innovative research on the methods and applications of extracting meaningful information from data using algorithms that are capable of handling the constraints of processing time, memory usage, and the dynamic and unstructured nature of data. Highlighting a range of topics including genetic algorithms, data classification, and wireless sensor networks, this book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the application of nature and biologically inspired algorithms for handling challenges posed by big data in diverse environments.

Predictive Intelligence Using Big Data and the Internet of Things

Predictive Intelligence Using Big Data and the Internet of Things PDF Author: Gupta, P.K.
Publisher: IGI Global
ISBN: 1522562117
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
With the recent growth of big data and the internet of things (IoT), individuals can now upload, retrieve, store, and collect massive amounts of information to help drive decisions and optimize processes. Due to this, a new age of predictive computing is taking place, and data can now be harnessed to predict unknown occurrences or probabilities based on data collected in real time. Predictive Intelligence Using Big Data and the Internet of Things highlights state-of-the-art research on predictive intelligence using big data, the IoT, and related areas to ensure quality assurance and compatible IoT systems. Featuring coverage on predictive application scenarios to discuss these breakthroughs in real-world settings and various methods, frameworks, algorithms, and security concerns for predictive intelligence, this book is ideally designed for academicians, researchers, advanced-level students, and technology developers.

Feature Engineering and Selection

Feature Engineering and Selection PDF Author: Max Kuhn
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266

Get Book Here

Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.