Author: Qingyun Duan
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0
Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.
Handbook of Hydrometeorological Ensemble Forecasting
Author: Qingyun Duan
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0
Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0
Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.
Hydrometeorology
Author: Kevin Sene
Publisher: Springer
ISBN: 331923546X
Category : Science
Languages : en
Pages : 432
Book Description
This second edition explores some of the latest techniques used to provide forecasts for a wide range of water-related applications in areas such as floods, droughts, water resources and environmental impacts. The practical uses can range from decisions on whether to issue a flood warning through to providing longer-term advice such as on when to plant and harvest crops or how to operate reservoirs for water supply and hydropower schemes. It provides an introduction to the topic for practitioners and researchers and useful background for courses in areas such as civil engineering, water resources, meteorology and hydrology. As in the first edition, the first section considers topics such as monitoring and forecasting techniques, demand forecasting and how forecasts are interpreted when issuing warnings or advice. Separate chapters are now included for meteorological and catchment monitoring techniques allowing a more in-depth discussion of topics such as weather radar and water quality observations. The chapters on meteorological and hydrological forecasting now include a greater emphasis on rainfall forecasting and ensemble and probabilistic techniques. Regarding the interpretation of forecasts, an updated chapter discusses topics such as approaches to issuing warnings and the use of decision support systems and risk-based techniques. Given the rapid pace of development in flash flood fore casting techniques, flash floods and slower responding riverine floods are now considered in separate chapters. This includes more detail on forecasting floods in large river basins and on methods for providing early warnings of debris flows, surface water flooding and ice jam and dam break floods. Later chapters now include more information on developing areas such as environmental modelling and seasonal flow forecasting. As before examples of operational systems are provided throughout and the extensive sets of references which were a feature of the first edition have been revised and updated. Key themes • floods • droughts • meteorological observations • catchment monitoring • meteorological forecasts • hydrological forecasts • demand forecasts • reservoirs • water resources • water quality • decision support • data assimilation • probabilistic forecasts Kevin Sene is a civil engineer and researcher with wide experience in flood risk management, water resources and hydrometeorology. He has previously published books on flood warning, forecasting and emergency response and flash floods (Springer 2008, 2013).
Publisher: Springer
ISBN: 331923546X
Category : Science
Languages : en
Pages : 432
Book Description
This second edition explores some of the latest techniques used to provide forecasts for a wide range of water-related applications in areas such as floods, droughts, water resources and environmental impacts. The practical uses can range from decisions on whether to issue a flood warning through to providing longer-term advice such as on when to plant and harvest crops or how to operate reservoirs for water supply and hydropower schemes. It provides an introduction to the topic for practitioners and researchers and useful background for courses in areas such as civil engineering, water resources, meteorology and hydrology. As in the first edition, the first section considers topics such as monitoring and forecasting techniques, demand forecasting and how forecasts are interpreted when issuing warnings or advice. Separate chapters are now included for meteorological and catchment monitoring techniques allowing a more in-depth discussion of topics such as weather radar and water quality observations. The chapters on meteorological and hydrological forecasting now include a greater emphasis on rainfall forecasting and ensemble and probabilistic techniques. Regarding the interpretation of forecasts, an updated chapter discusses topics such as approaches to issuing warnings and the use of decision support systems and risk-based techniques. Given the rapid pace of development in flash flood fore casting techniques, flash floods and slower responding riverine floods are now considered in separate chapters. This includes more detail on forecasting floods in large river basins and on methods for providing early warnings of debris flows, surface water flooding and ice jam and dam break floods. Later chapters now include more information on developing areas such as environmental modelling and seasonal flow forecasting. As before examples of operational systems are provided throughout and the extensive sets of references which were a feature of the first edition have been revised and updated. Key themes • floods • droughts • meteorological observations • catchment monitoring • meteorological forecasts • hydrological forecasts • demand forecasts • reservoirs • water resources • water quality • decision support • data assimilation • probabilistic forecasts Kevin Sene is a civil engineer and researcher with wide experience in flood risk management, water resources and hydrometeorology. He has previously published books on flood warning, forecasting and emergency response and flash floods (Springer 2008, 2013).
Handbook of HydroInformatics
Author: Saeid Eslamian
Publisher: Elsevier
ISBN: 0128219521
Category : Science
Languages : en
Pages : 422
Book Description
Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. - Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.
Publisher: Elsevier
ISBN: 0128219521
Category : Science
Languages : en
Pages : 422
Book Description
Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. - Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.
Flood Forecasting and Hydraulic Structures
Author: P. V. Timbadiya
Publisher: Springer Nature
ISBN: 9819918901
Category : Science
Languages : en
Pages : 647
Book Description
This book comprises the proceedings of the 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) focusing on broad spectrum of emerging opportunities and challenges in the field of flood forecasting and hydraulic structures. It covers a range of topics, including, but not limited to, early warning system, urban flood modelling and management, dam hazard classification, river training and protection works, structural and non-structural measures for flood mitigation, assessment and development of flood vulnerability, hazard and risk maps rehabilitation of old dams, streamflow turbines, canal operation and related structure, operation and management of dams including their instrumentation etc. Presenting recent advances in the form of illustrations, tables, and text, it offers readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the field of flood forecasting and hydraulic structures, making it a valuable resource for both beginners and researchers wanting to further their understanding of hydraulics, water resources and coastal engineering.
Publisher: Springer Nature
ISBN: 9819918901
Category : Science
Languages : en
Pages : 647
Book Description
This book comprises the proceedings of the 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) focusing on broad spectrum of emerging opportunities and challenges in the field of flood forecasting and hydraulic structures. It covers a range of topics, including, but not limited to, early warning system, urban flood modelling and management, dam hazard classification, river training and protection works, structural and non-structural measures for flood mitigation, assessment and development of flood vulnerability, hazard and risk maps rehabilitation of old dams, streamflow turbines, canal operation and related structure, operation and management of dams including their instrumentation etc. Presenting recent advances in the form of illustrations, tables, and text, it offers readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the field of flood forecasting and hydraulic structures, making it a valuable resource for both beginners and researchers wanting to further their understanding of hydraulics, water resources and coastal engineering.
Research Handbook on Flood Risk Management
Author: Jessica Lamond
Publisher: Edward Elgar Publishing
ISBN: 1839102985
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Pushing the boundaries of flood risk management research, this comprehensive Research Handbook presents pragmatic insights into all areas relating to flood risk. Through its use of dynamic and people-centred paradigms, it explores urban flood management within localities, properties, neighbourhoods and cities.
Publisher: Edward Elgar Publishing
ISBN: 1839102985
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Pushing the boundaries of flood risk management research, this comprehensive Research Handbook presents pragmatic insights into all areas relating to flood risk. Through its use of dynamic and people-centred paradigms, it explores urban flood management within localities, properties, neighbourhoods and cities.
Hydrological Drought
Author: Lena M. Tallaksen
Publisher: Elsevier
ISBN: 0323916791
Category : Science
Languages : en
Pages : 740
Book Description
Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Second Edition provides a comprehensive review of processes and estimation methods for streamflow and groundwater drought. It includes a qualitative conceptual understanding of drought features and processes, a detailed presentation of estimation methods and tools, practical examples and impacts relevant for operational practice.The drought phenomenon and its diversity across the world are illustrated using a global set of daily streamflow series, whereas regional and local aspects of drought are studied using a combination of hydrological time series and catchment information. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Second Edition concludes with human impacts, including climate change impacts on drought, drought forecasting and early warning and examples of procedures on how to manage water during drought. The majority of the examples are taken from regions where the rivers run most of the year, but not exclusively. The material presented ranges from well-established knowledge and analysing methods to recent developments in drought research. Its nature varies accordingly, from a more traditional textbook and clear overview to that of a research paper, which introduces recent approaches and methodologies for drought analysis. - Includes a number of innovative tools (self-guided tours, worked examples and software) to support both the understanding and teaching of different methods for evaluating drought severity, human impacts, ecological effects of drought and regional methods that enable estimation - Offers applications/demonstrations using a comprehensive database of streamflow and thematic data from a large number of national and international agencies, which illustrate how data are used when evaluating drought severity - Presents the state of the art of hydrological drought, including well established knowledge as well as recent developments in drought research
Publisher: Elsevier
ISBN: 0323916791
Category : Science
Languages : en
Pages : 740
Book Description
Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Second Edition provides a comprehensive review of processes and estimation methods for streamflow and groundwater drought. It includes a qualitative conceptual understanding of drought features and processes, a detailed presentation of estimation methods and tools, practical examples and impacts relevant for operational practice.The drought phenomenon and its diversity across the world are illustrated using a global set of daily streamflow series, whereas regional and local aspects of drought are studied using a combination of hydrological time series and catchment information. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Second Edition concludes with human impacts, including climate change impacts on drought, drought forecasting and early warning and examples of procedures on how to manage water during drought. The majority of the examples are taken from regions where the rivers run most of the year, but not exclusively. The material presented ranges from well-established knowledge and analysing methods to recent developments in drought research. Its nature varies accordingly, from a more traditional textbook and clear overview to that of a research paper, which introduces recent approaches and methodologies for drought analysis. - Includes a number of innovative tools (self-guided tours, worked examples and software) to support both the understanding and teaching of different methods for evaluating drought severity, human impacts, ecological effects of drought and regional methods that enable estimation - Offers applications/demonstrations using a comprehensive database of streamflow and thematic data from a large number of national and international agencies, which illustrate how data are used when evaluating drought severity - Presents the state of the art of hydrological drought, including well established knowledge as well as recent developments in drought research
Numerical Weather Prediction: East Asian Perspectives
Author: Seon Ki Park
Publisher: Springer Nature
ISBN: 3031405676
Category : Science
Languages : en
Pages : 590
Book Description
This book describes the history, development, current status of numerical weather prediction (NWP), in both operational and research modes, and various applications of NWP models, which have been made by the scientists in East Asian countries. In particular, it introduces the major contributions to the worldwide NWP community achieved by East Asian scientists, including parameterizations, data assimilation techniques, parameter optimizations, and applications of the NWP models to improve the forecasts of high-impact weather systems in East Asia. This book provides both research scientists and graduate students with basic knowledge and insights on the development of NWP in East Asia.
Publisher: Springer Nature
ISBN: 3031405676
Category : Science
Languages : en
Pages : 590
Book Description
This book describes the history, development, current status of numerical weather prediction (NWP), in both operational and research modes, and various applications of NWP models, which have been made by the scientists in East Asian countries. In particular, it introduces the major contributions to the worldwide NWP community achieved by East Asian scientists, including parameterizations, data assimilation techniques, parameter optimizations, and applications of the NWP models to improve the forecasts of high-impact weather systems in East Asia. This book provides both research scientists and graduate students with basic knowledge and insights on the development of NWP in East Asia.
Advances in Streamflow Forecasting
Author: Priyanka Sharma
Publisher: Elsevier
ISBN: 0128209240
Category : Science
Languages : en
Pages : 406
Book Description
Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures
Publisher: Elsevier
ISBN: 0128209240
Category : Science
Languages : en
Pages : 406
Book Description
Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures
Proceedings of The 9th International Conference on Water Resource and Environment
Author: Chih-Huang Weng
Publisher: Springer Nature
ISBN: 9819709482
Category :
Languages : en
Pages : 486
Book Description
Publisher: Springer Nature
ISBN: 9819709482
Category :
Languages : en
Pages : 486
Book Description
Proceedings of the 2nd International Symposium on Disaster Resilience and Sustainable Development
Author: Indrajit Pal
Publisher: Springer Nature
ISBN: 9811962979
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This, conference proceeding, book contains invited articles and contributory papers from the 2nd International Symposium on Disaster Resilience and Sustainable Development, organized by Asian Institute of Technology, Thailand, on June 24–25, 2021. It includes contributions from researchers and practitioners working in the area of disaster mitigation and risk reduction for sustainable communities. The articles cover the topics such as on tools and techniques of hazard identifications, risk assessment, engineering innovations for hazard mitigation, and safe design of structures to the vulnerable systems. The content caters to research scholars, students, industry professionals, data analytics companies, re-insurance companies, government bodies and policymakers, who work in the field of hazard modeling and disaster management.
Publisher: Springer Nature
ISBN: 9811962979
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This, conference proceeding, book contains invited articles and contributory papers from the 2nd International Symposium on Disaster Resilience and Sustainable Development, organized by Asian Institute of Technology, Thailand, on June 24–25, 2021. It includes contributions from researchers and practitioners working in the area of disaster mitigation and risk reduction for sustainable communities. The articles cover the topics such as on tools and techniques of hazard identifications, risk assessment, engineering innovations for hazard mitigation, and safe design of structures to the vulnerable systems. The content caters to research scholars, students, industry professionals, data analytics companies, re-insurance companies, government bodies and policymakers, who work in the field of hazard modeling and disaster management.