Handbook of Discrete-Valued Time Series

Handbook of Discrete-Valued Time Series PDF Author: Richard A. Davis
Publisher: CRC Press
ISBN: 1466577746
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca

Handbook of Discrete-Valued Time Series

Handbook of Discrete-Valued Time Series PDF Author: Richard A. Davis
Publisher: CRC Press
ISBN: 1466577746
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca

Hidden Markov and Other Models for Discrete- valued Time Series

Hidden Markov and Other Models for Discrete- valued Time Series PDF Author: Iain L. MacDonald
Publisher: CRC Press
ISBN: 9780412558504
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Discrete-valued time series are common in practice, but methods for their analysis are not well-known. In recent years, methods have been developed which are specifically designed for the analysis of discrete-valued time series. Hidden Markov and Other Models for Discrete-Valued Time Series introduces a new, versatile, and computationally tractable class of models, the "hidden Markov" models. It presents a detailed account of these models, then applies them to data from a wide range of diverse subject areas, including medicine, climatology, and geophysics. This book will be invaluable to researchers and postgraduate and senior undergraduate students in statistics. Researchers and applied statisticians who analyze time series data in medicine, animal behavior, hydrology, and sociology will also find this information useful.

Stochastic Models, Statistics and Their Applications

Stochastic Models, Statistics and Their Applications PDF Author: Ansgar Steland
Publisher: Springer
ISBN: 3319138812
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Copula-Based Markov Models for Time Series

Copula-Based Markov Models for Time Series PDF Author: Li-Hsien Sun
Publisher: Springer Nature
ISBN: 9811549982
Category : Business & Economics
Languages : en
Pages : 141

Get Book Here

Book Description
This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers. As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.

Bayesian Analysis of Time Series

Bayesian Analysis of Time Series PDF Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 0429948921
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
In many branches of science relevant observations are taken sequentially over time. Bayesian Analysis of Time Series discusses how to use models that explain the probabilistic characteristics of these time series and then utilizes the Bayesian approach to make inferences about their parameters. This is done by taking the prior information and via Bayes theorem implementing Bayesian inferences of estimation, testing hypotheses, and prediction. The methods are demonstrated using both R and WinBUGS. The R package is primarily used to generate observations from a given time series model, while the WinBUGS packages allows one to perform a posterior analysis that provides a way to determine the characteristic of the posterior distribution of the unknown parameters. Features Presents a comprehensive introduction to the Bayesian analysis of time series. Gives many examples over a wide variety of fields including biology, agriculture, business, economics, sociology, and astronomy. Contains numerous exercises at the end of each chapter many of which use R and WinBUGS. Can be used in graduate courses in statistics and biostatistics, but is also appropriate for researchers, practitioners and consulting statisticians. About the author Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books for Chapman & Hall/CRC include Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement.

Advances in Time Series Analysis and Forecasting

Advances in Time Series Analysis and Forecasting PDF Author: Ignacio Rojas
Publisher: Springer
ISBN: 3319557890
Category : Business & Economics
Languages : en
Pages : 412

Get Book Here

Book Description
This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.

Handbook of Environmental and Ecological Statistics

Handbook of Environmental and Ecological Statistics PDF Author: Alan E. Gelfand
Publisher: CRC Press
ISBN: 1351648543
Category : Mathematics
Languages : en
Pages : 798

Get Book Here

Book Description
This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.

Bayesian Analysis of Infectious Diseases

Bayesian Analysis of Infectious Diseases PDF Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1000336476
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Bayesian Analysis of Infectious Diseases -COVID-19 and Beyond shows how the Bayesian approach can be used to analyze the evolutionary behavior of infectious diseases, including the coronavirus pandemic. The book describes the foundation of Bayesian statistics while explicating the biology and evolutionary behavior of infectious diseases, including viral and bacterial manifestations of the contagion. The book discusses the application of Markov Chains to contagious diseases, previews data analysis models, the epidemic threshold theorem, and basic properties of the infection process. Also described are the chain binomial model for the evolution of epidemics. Features: Represents the first book on infectious disease from a Bayesian perspective. Employs WinBUGS and R to generate observations that follow the course of contagious maladies. Includes discussion of the coronavirus pandemic as well as many examples from the past, including the flu epidemic of 1918-1919. Compares standard non-Bayesian and Bayesian inferences. Offers a companion website with the R and WinBUGS code.

An Introduction to Discrete-Valued Time Series

An Introduction to Discrete-Valued Time Series PDF Author: Christian H. Weiss
Publisher: John Wiley & Sons
ISBN: 1119096960
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
A much-needed introduction to the field of discrete-valued time series, with a focus on count-data time series Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. Classic approaches like ARMA models and the Box-Jenkins program are also featured with the basics of these approaches summarized in an Appendix. In addition, data examples, with all relevant R code, are available on a companion website. Provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series Covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties Addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples Covers classical approaches such as ARMA models, Box-Jenkins program and how to generate functions Includes dataset examples with all necessary R code provided on a companion website An Introduction to Discrete-Valued Time Series is a valuable working resource for researchers and practitioners in a broad range of fields, including statistics, data science, machine learning, and engineering. It will also be of interest to postgraduate students in statistics, mathematics and economics.

Nonparametric Statistics

Nonparametric Statistics PDF Author: Ricardo Cao
Publisher: Springer
ISBN: 3319415824
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers from around the globe, and contribute to the further development of the field.