Author: Janmenjoy Nayak
Publisher: Academic Press
ISBN: 0128222611
Category : Science
Languages : en
Pages : 398
Book Description
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare
Author: Janmenjoy Nayak
Publisher: Academic Press
ISBN: 0128222611
Category : Science
Languages : en
Pages : 398
Book Description
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Publisher: Academic Press
ISBN: 0128222611
Category : Science
Languages : en
Pages : 398
Book Description
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Handbook of Artificial Intelligence in Biomedical Engineering
Author: Saravanan Krishnan
Publisher: CRC Press
ISBN: 100006767X
Category : Computers
Languages : en
Pages : 538
Book Description
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
Publisher: CRC Press
ISBN: 100006767X
Category : Computers
Languages : en
Pages : 538
Book Description
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
Handbook of Deep Learning in Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Handbook of Research on Applied Intelligence for Health and Clinical Informatics
Author: Thakare, Anuradha Dheeraj
Publisher: IGI Global
ISBN: 1799877108
Category : Medical
Languages : en
Pages : 470
Book Description
Currently, informatics within the field of public health is a developing and growing industry. Clinical informatics are used in direct patient care by supplying medical practitioners with information that can be used to develop a care plan. Intelligent applications in clinical informatics facilitates with the technology-based solutions to analyze data or medical images and help clinicians to retrieve that information. Decision models aid with making complex decisions especially in uncertain situations. The Handbook of Research on Applied Intelligence for Health and Clinical Informatics is a comprehensive reference book that focuses on the study of resources and methods for the management of healthcare infrastructure and information. This book provides insights on how applied intelligence with deep learning, experiential learning, and more will impact healthcare and clinical information processing. The content explores the representation, processing, and communication of clinical information in natural and engineered systems. This book covers a range of topics including applied intelligence, medical imaging, telehealth, and decision support systems, and also looks at technologies and tools used in the detection and diagnosis of medical conditions such as cancers, diabetes, heart disease, lung disease, and prenatal syndromes. It is an essential reference source for diagnosticians, medical professionals, imaging specialists, data specialists, IT consultants, medical technologists, academicians, researchers, industrial experts, scientists, and students.
Publisher: IGI Global
ISBN: 1799877108
Category : Medical
Languages : en
Pages : 470
Book Description
Currently, informatics within the field of public health is a developing and growing industry. Clinical informatics are used in direct patient care by supplying medical practitioners with information that can be used to develop a care plan. Intelligent applications in clinical informatics facilitates with the technology-based solutions to analyze data or medical images and help clinicians to retrieve that information. Decision models aid with making complex decisions especially in uncertain situations. The Handbook of Research on Applied Intelligence for Health and Clinical Informatics is a comprehensive reference book that focuses on the study of resources and methods for the management of healthcare infrastructure and information. This book provides insights on how applied intelligence with deep learning, experiential learning, and more will impact healthcare and clinical information processing. The content explores the representation, processing, and communication of clinical information in natural and engineered systems. This book covers a range of topics including applied intelligence, medical imaging, telehealth, and decision support systems, and also looks at technologies and tools used in the detection and diagnosis of medical conditions such as cancers, diabetes, heart disease, lung disease, and prenatal syndromes. It is an essential reference source for diagnosticians, medical professionals, imaging specialists, data specialists, IT consultants, medical technologists, academicians, researchers, industrial experts, scientists, and students.
Principles and Methods of Explainable Artificial Intelligence in Healthcare
Author: Albuquerque, Victor Hugo C. de
Publisher: IGI Global
ISBN: 1668437929
Category : Computers
Languages : en
Pages : 347
Book Description
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Publisher: IGI Global
ISBN: 1668437929
Category : Computers
Languages : en
Pages : 347
Book Description
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Handbook of Research on Informatics in Healthcare and Biomedicine
Author: Lazakidou, Athina A.
Publisher: IGI Global
ISBN: 1591409837
Category : Medical
Languages : en
Pages : 479
Book Description
Describes and analyzes recent breakthroughs in healthcare and biomedicine providing comprehensive coverage and definitions of important issues, concepts, new trends and advanced technologies.
Publisher: IGI Global
ISBN: 1591409837
Category : Medical
Languages : en
Pages : 479
Book Description
Describes and analyzes recent breakthroughs in healthcare and biomedicine providing comprehensive coverage and definitions of important issues, concepts, new trends and advanced technologies.
Computational Intelligence and Its Applications in Healthcare
Author: Jitendra Kumar Verma
Publisher: Academic Press
ISBN: 0128206195
Category : Science
Languages : en
Pages : 258
Book Description
Computational Intelligence and Its Applications in Healthcare presents rapidly growing applications of computational intelligence for healthcare systems, including intelligent synthetic characters, man-machine interface, menu generators, user acceptance analysis, pictures archiving, and communication systems. Computational intelligence is the study of the design of intelligent agents, which are systems that act intelligently: they do what they think are appropriate for their circumstances and goals; they're flexible to changing environments and goals; they learn from experience; and they make appropriate choices given perceptual limitations and finite computation. Computational intelligence paradigms offer many advantages in maintaining and enhancing the field of healthcare. - Provides coverage of fuzzy logic, neural networks, evolutionary computation, learning theory, probabilistic methods, telemedicine, and robotics applications - Includes coverage of artificial intelligence and biological applications, soft computing, image and signal processing, and genetic algorithms - Presents the latest developments in computational methods in healthcare - Bridges the gap between obsolete literature and current literature
Publisher: Academic Press
ISBN: 0128206195
Category : Science
Languages : en
Pages : 258
Book Description
Computational Intelligence and Its Applications in Healthcare presents rapidly growing applications of computational intelligence for healthcare systems, including intelligent synthetic characters, man-machine interface, menu generators, user acceptance analysis, pictures archiving, and communication systems. Computational intelligence is the study of the design of intelligent agents, which are systems that act intelligently: they do what they think are appropriate for their circumstances and goals; they're flexible to changing environments and goals; they learn from experience; and they make appropriate choices given perceptual limitations and finite computation. Computational intelligence paradigms offer many advantages in maintaining and enhancing the field of healthcare. - Provides coverage of fuzzy logic, neural networks, evolutionary computation, learning theory, probabilistic methods, telemedicine, and robotics applications - Includes coverage of artificial intelligence and biological applications, soft computing, image and signal processing, and genetic algorithms - Presents the latest developments in computational methods in healthcare - Bridges the gap between obsolete literature and current literature
Neural Networks and Artificial Intelligence for Biomedical Engineering
Author: Donna L. Hudson
Publisher: John Wiley & Sons
ISBN: 0780334043
Category : Computers
Languages : en
Pages : 337
Book Description
Using examples drawn from biomedicine and biomedical engineering, this essential reference book brings you comprehensive coverage of all the major techniques currently available to build computer-assisted decision support systems. You will find practical solutions for biomedicine based on current theory and applications of neural networks, artificial intelligence, and other methods for the development of decision aids, including hybrid systems. Neural Networks and Artificial Intelligence for Biomedical Engineering offers students and scientists of biomedical engineering, biomedical informatics, and medical artificial intelligence a deeper understanding of the powerful techniques now in use with a wide range of biomedical applications. Highlighted topics include: Types of neural networks and neural network algorithms Knowledge representation, knowledge acquisition, and reasoning methodologies Chaotic analysis of biomedical time series Genetic algorithms Probability-based systems and fuzzy systems Evaluation and validation of decision support aids
Publisher: John Wiley & Sons
ISBN: 0780334043
Category : Computers
Languages : en
Pages : 337
Book Description
Using examples drawn from biomedicine and biomedical engineering, this essential reference book brings you comprehensive coverage of all the major techniques currently available to build computer-assisted decision support systems. You will find practical solutions for biomedicine based on current theory and applications of neural networks, artificial intelligence, and other methods for the development of decision aids, including hybrid systems. Neural Networks and Artificial Intelligence for Biomedical Engineering offers students and scientists of biomedical engineering, biomedical informatics, and medical artificial intelligence a deeper understanding of the powerful techniques now in use with a wide range of biomedical applications. Highlighted topics include: Types of neural networks and neural network algorithms Knowledge representation, knowledge acquisition, and reasoning methodologies Chaotic analysis of biomedical time series Genetic algorithms Probability-based systems and fuzzy systems Evaluation and validation of decision support aids
Computational Intelligence in Biomedical Engineering
Author: Rezaul Begg
Publisher: CRC Press
ISBN: 1420005898
Category : Medical
Languages : en
Pages : 396
Book Description
As in many other fields, biomedical engineers benefit from the use of computational intelligence (CI) tools to solve complex and non-linear problems. The benefits could be even greater if there were scientific literature that specifically focused on the biomedical applications of computational intelligence techniques. The first comprehensive field-
Publisher: CRC Press
ISBN: 1420005898
Category : Medical
Languages : en
Pages : 396
Book Description
As in many other fields, biomedical engineers benefit from the use of computational intelligence (CI) tools to solve complex and non-linear problems. The benefits could be even greater if there were scientific literature that specifically focused on the biomedical applications of computational intelligence techniques. The first comprehensive field-