Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana

Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana PDF Author: Kristin A. Fritz
Publisher:
ISBN:
Category : Mineral industries
Languages : en
Pages : 94

Get Book Here

Book Description

Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana

Habitat Resource Selection by Greater Sage Grouse Within Oil and Gas Development Areas in North Dakota and Montana PDF Author: Kristin A. Fritz
Publisher:
ISBN:
Category : Mineral industries
Languages : en
Pages : 94

Get Book Here

Book Description


Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana

Seasonal Habitat Selection and Breeding Ecology of Greater-sage-grouse in Carbon County, Montana PDF Author: Erin Leslie Gelling
Publisher:
ISBN:
Category : Habitat (Ecology)
Languages : en
Pages : 139

Get Book Here

Book Description
Greater sage-grouse (Centrocercus urophasianus; hereafter ‘sage-grouse’) are the focus of much research and conservation efforts owing to their obligate relationship with sagebrush (Artemisia spp.) and dramatic population declines over the last 50 years. Sage-grouse are a partially migratory species with three main seasonal habitats during breeding, summer, and winter. Anthropogenic disturbances can impact habitat and areas used by sage-grouse during all three seasons. Sage-grouse also exhibit low productivity that is limited, in part, by nest and chick survival. As uniparental incubators, nesting can be energetically costly for female sage-grouse because they have limited mobility when their precocial chicks are young. In addition, habitat characteristics have been shown to differ between brood-rearing female sage-grouse and broodless females (i.e., females without broods). Therefore, to sustain sage-grouse populations, focus should be on increasing vital rates for adult females, chicks, and nests—the life stages that most influence population growth. Research is thus critical to better understand the relationships between life stages of sage-grouse and their seasonal habitats, particularly during breeding and summer brood-rearing. The focus of my thesis was to assess the influence of natural and anthropogenic features on sage-grouse seasonal habitat selection, assess factors influencing sage-grouse nest survival and attentiveness, and assess habitat selection and behavior between brood-rearing and broodless female sage-grouse. By focusing on habitat selection across three seasons, during reproductive and non-reproductive states, and across second, third, and fourth-order habitat selection, wildlife managers will have better information to manage sage-grouse habitat to sustain or increase survival for adult females, broods, and nests. More specifically, this information will inform areas to prioritize management, restoration, and conservation to benefit sage-grouse populations and add to the body of knowledge of basic sage-grouse breeding ecology. In Chapter 1, I examined natural and anthropogenic landscape features that influence sage-grouse habitat selection during breeding, summer, and winter seasons. I used data from 85 GPS-tagged female sage-grouse in Carbon County, Montana and Park County, Wyoming spanning April 2018–April 2020. I found natural and anthropogenic features combined best explained sage-grouse habitat selection for all three seasons. Sage-grouse habitat selection differed between each season with sagebrush cover being important for breeding and agricultural fields being important in summer. In general, sage-grouse selected for sagebrush or shrub characteristics and lower slopes and avoided major roads, residential development, and oil and gas. However, anthropogenic disturbances were not always avoided and sometimes sage-grouse selected areas closer to these disturbances, such as agricultural fields during summer or roads during winter. I created predictive maps from resource selection function modeling to depict relative probability of use for each seasonal range to be used in wildlife management and conservation planning. In Chapter 2, I focused on nest survival and attentiveness. Nest success is an important part of the breeding process that has implications for population growth. I described sage-grouse incubation behavior, examined whether sage-grouse incubation behavior influenced nest survival, and evaluated factors that influenced sage-grouse incubation behavior. For this chapter, I used data collected from my study area in Carbon County, Montana and Park County, Wyoming and a separate study area in the Red Desert of Carbon and Sweetwater counties, Wyoming. I used 131 nests to describe sage-grouse incubation behavior and 118 nests to examine nest survival and average recess duration. I found nest survival was higher in Bridger compared to Red Desert. I found incubation constancy was higher and recesses shorter for adults compared to yearlings. I found nest survival was higher with increased minimum temperature and reduced with longer recesses. Recess duration was shorter with greater sagebrush cover within 30 m and recesses were longer with higher minimum temperature and day of incubation. Factors influencing nest survival and incubation patterns will be important for directing management to improve sage-grouse nest success and to clarify to researchers and managers our understanding of the basics of sage-grouse nesting biology. In Chapter 3, I focused on habitat selection, activity patterns, and ranges of both brood-rearing and broodless females during the breeding season. I examined behavior and reproductive state influence on microhabitat selection, daily and seasonal range sizes, and daily activity levels for brood-rearing and broodless females. I sampled microhabitat for 36 females, estimated ranges for 38 females, and measured activity for 43 females. I found females with broods 0–2 weeks selected microhabitat characteristics when night roosting and females with broods 3–5 weeks selected microhabitat characteristics when foraging and night roosting. However, broodless females showed no selection for microhabitat based on behavior. I also found differences in activity levels for both brood-rearing and broodless females throughout the day. Broods 0–2 weeks had the smallest ranges while broods 3–5 weeks and broodless females had larger daily and seasonal ranges. Differences in habitat selection, range size, and behavior warrants management to conserve areas used by both brood-rearing and broodless female sage-grouse in a population, whereas most past efforts focused primarily on habitat used by brood-rearing females. The Wildlife Society Bulletin has accepted this chapter for publication with Drs. Jeffrey Beck and Aaron Pratt as coauthors.

Greater Sage-Grouse

Greater Sage-Grouse PDF Author: Steve Knick
Publisher: Univ of California Press
ISBN: 0520948688
Category : Science
Languages : en
Pages : 665

Get Book Here

Book Description
Admired for its elaborate breeding displays and treasured as a game bird, the Greater Sage-Grouse is a charismatic symbol of the broad open spaces in western North America. Unfortunately these birds have declined across much of their range—which stretches across 11 western states and reaches into Canada—mostly due to loss of critical sagebrush habitat. Today the Greater Sage-Grouse is at the center of a complex conservation challenge. This multifaceted volume, an important foundation for developing conservation strategies and actions, provides a comprehensive synthesis of scientific information on the biology and ecology of the Greater Sage-Grouse. Bringing together the experience of thirty-eight researchers, it describes the bird’s population trends, its sagebrush habitat, and potential limitations to conservation, including the effects of rangeland fire, climate change, invasive plants, disease, and land uses such as energy development, grazing, and agriculture.

Ecology, Conservation, and Management of Grouse

Ecology, Conservation, and Management of Grouse PDF Author: Brett K. Sandercock
Publisher: Univ of California Press
ISBN: 0520270061
Category : Medical
Languages : en
Pages : 376

Get Book Here

Book Description
"Summarizing current knowledge of grouse biology, this volume is organized in four sections--spatial ecology, habitat relationships, population biology, and conservation and management--and offers insights into spatial requirements, movements, and demography of grouse. Much of the research employs emerging tools in ecology that span biogeochemistry, molecular genetics, endocrinology, radio-telemetry, and remote sensing".--Adapted from publisher descrip tion on back cover

Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape

Quantifying Habitat Importance for Greater Sage-grouse (Centrocercus Urophasianus) Population Persistence in an Energy Development Landscape PDF Author: Christopher P. Kirol
Publisher:
ISBN: 9781267422484
Category : Sage grouse
Languages : en
Pages : 203

Get Book Here

Book Description
Landscapes undergoing intensive energy extraction activities present challenges to the persistence of wildlife populations. Much of the oil and gas resources in western North America, underlie sagebrush (Artemisia spp.) ecosystems. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush obligate that is dependent on this ecosystem for its entire life-cycle. I developed research objectives to: 1) spatially quantify habitat quality for female greater sage-grouse during the reproductive period in the Atlantic Rim Project Area (ARPA) of south-central, Wyoming, which was being developed for coalbed natural gas (CBNG) resources, 2) utilize a non-impacted offsite reference area (Stewart Creek [SC]) to assess factors potentially contributing to changes in habitat quality resulting from energy development during the nesting period, and 3) explore microhabitat conditions that were crucial to female greater sage-grouse reproduction. In a geographic information system (GIS) framework, I quantified habitat quality for greater sage-grouse in the ARPA by generating a suite of habitat-specific environmental and anthropogenic variables at three landscape scales. My results showed that environmental and anthropogenic variables at multiple spatial scales were predictive of female greater sage-grouse occurrence and fitness. Anthropogenic variables related to CBNG development were predictive in all of the final occurrence models, suggesting that anthropogenic features were resulting in habitat avoidance through all summer life-stages. My fitness modeling illustrated habitat-specific and scale dependent variation in survival across the ARPA landscape. When mapped, the final ecological model identified habitat patches that were contributing the most to population persistence and that source-sink dynamics within the ARPA landscape may be shifting as a result of CBNG development. Documenting an anthropogenic impact that has already occurred yields limited inference unless a means of comparison is incorporated. I evaluated habitat and demographic responses of greater sage-grouse during nesting by comparing an energy development landscape (ARPA) to a non-impacted landscape (SC). I accomplished this by spatially shifting my nest occurrence and survival models from the ARPA to SC. In addition, I compared nest survival rates between the areas. My nest occurrence and survival models were predictive in SC without the CBNG predictor variable. Specific environmental variables that were robust predictors of nest occurrence in both areas included big sagebrush canopy cover and litter that represented dead standing woody vegetation and detached organic matter both at a 0.25-km2 scale. Further, the variability in shrub heights at a 1.0-km2 scale at was highly predictive of nest survival in both areas. The evidence of the predictive ability of my nest occurrence models in SC and the habitat likeness between areas allowed me to assess what greater sage-grouse nest selection in the ARPA might have looked like prior to the introduction of CBNG development by replacing time (pre-development data) with space (using SC as a spatial control). I modeled the ARPA RSF against the SC nest occurrence data (i.e., nest selection in the absence of CBNG development) and then spatially shifted the adjusted model back to the ARPA. However, the range of variability in habitat conditions between the ARPA and SC caused the spatial shifting of the models to function poorly in practice. This elucidates an important consideration in choosing spatial control related habitat variability and the predictive errors associated with extrapolation out of the range of the data used to train the RSF. Thus for a spatial control to function well, not only do habitat conditions need to be similar to the impacted area but the range of variability in habitat conditions need to also be comparable. Understanding habitat selection at macrohabitat and microhabitat scales is critical to conserving and restoring greater sage-grouse habitat. Because of the similar ecological conditions, my microhabitat selection analysis for the greater sage-grouse during the nesting, early and late brood-rearing periods incorporated both the ARPA and SC. Nest microhabitat selection was positively correlated with mountain big sagebrush (A. tridentata vaseyana) and litter cover. I found that female greater sage-grouse preferred areas with greater sagebrush cover and greater perennial grass cover during early and late brood-rearing. However, I did not find forb cover to be predictive of early or late brood-rearing occurrence. My findings suggest that sage-grouse inhabiting xeric sagebrush habitats (less than 25 cm annual precipitation) rely on sagebrush cover and grass structure for nesting as well as brood-rearing and that these structural characteristics may be more important than forb availability at the microhabitat scale. (Abstract shortened by UMI.)

Upper Missouri River Breaks National Monument, Resource Management Plan

Upper Missouri River Breaks National Monument, Resource Management Plan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 644

Get Book Here

Book Description


Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for forming any conclusions regarding potential impacts of wind energy development on sage-grouse. Although the data collected during the initial phases of this study indicate that greater sage-grouse may continue to use habitats near wind-energy facilities, research conducted on greater sage-grouse response to oil and gas development has found population declines may not occur until 2-10 years after development. Therefore, long-term data from several geographic areas within the range of the sage-grouse will likely be required to adequately assess impacts of wind-energy development on greater sage-grouse.

Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming

Partial Migration, Habitat Selection, and the Conservation of Greater Sage-grouse in the Bighorn Basin of Montana and Wyoming PDF Author: Aaron C. Pratt
Publisher:
ISBN: 9780355856637
Category : Habitat (Ecology)
Languages : en
Pages : 175

Get Book Here

Book Description
The greater sage-grouse (Centrocercus urophasianus) has undergone range contractions and population declines largely due to habitat loss, fragmentation, and degradation. These declines have resulted in unprecedented conservation actions designed to reduce these threats. We investigated partial migration and maladaptive habitat selection, two phenomena that could complicate sage-grouse habitat conservation and hinder the effectiveness of these actions. Our first objective was to investigate what influenced sage-grouse when deciding to migrate between seasonal ranges and if there was variation in environmental conditions that explained why only some individuals migrated. Sage-grouse interpreted direct indicators of resource quality, especially temperature, when timing movements between seasonal ranges. For summer and fall transitions migratory grouse experienced more migration cues and were likely avoiding more rapid plant desiccation in warmer breeding ranges and avoiding higher snow accumulation in colder summer ranges with more precipitation. Conservationists must prioritize seasonal habitats when delineating reserves designed to protect partially-migratory species. Our second objective was to evaluate whether a more migratory sage-grouse population required a different habitat conservation strategy relative to seasonal requirements than a less migratory population. For both populations, prioritization of breeding habitat was justified because breeding habitat was most like other seasonal requirements and it had the greatest estimated contribution to population change. However, information specific to each population was necessary to identify the importance of prioritizing additional seasonal habitat with a greater need to include summer and winter habitat for the more migratory population. Sage-grouse conservation could be hindered by maladaptive habitat selection, where individuals select habitat where their fitness is lower or avoid habitat where they would perform better. Our third objective was to evaluate whether sage-grouse selected habitat relative to habitat quality (survival), and identify any characteristics where they were not matching selection with apparent survival and reproductive costs or benefits. We only measured a positive relationship between habitat selection and survival during winter and we found evidence for a negative selection relationship relative to several habitat characteristics. Our research has identified areas that warrant further investigation relative to potential mechanisms of maladaptive habitat selection in sage-grouse or possible secondary benefits of risky habitats.

Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans

Montana Statewide Oil and Gas and Proposed Amendment of the Powder River and Billings Resource Management Plans PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 266

Get Book Here

Book Description


Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana

Survival and Summer Habitat Selection of Male Greater Sage-grouse (Centrocercus Urophasianus) in Southwestern Montana PDF Author: Colleen Lyn Wisinski
Publisher:
ISBN:
Category : Sage grouse
Languages : en
Pages : 152

Get Book Here

Book Description
During the 20th century, Greater Sage-Grouse (Centrocercus urophasianus) populations in North America have declined by 69-99%. In southwest Montana little is known about the factors leading to declines in sage grouse populations; as a result, there are strong concerns regarding sage grouse population trends and habitat quality. I used radio-marked male sage grouse to obtain known-fate survival data and provide locations for habitat analyses. The objectives of the study were (1) to estimate survival rates of marked birds, and (2) to characterize the habitat used by sage grouse in southwestern Montana and compare it with available habitat. I used known-fate data to estimate annual survival, and I measured habitat attributes associated with aerial locations of instrumented sage grouse (use sites) and a series of randomly chosen locations within each study site (available sites).