Guidelines for Seismic Retrofit of Existing Buildings

Guidelines for Seismic Retrofit of Existing Buildings PDF Author:
Publisher:
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 74

Get Book Here

Book Description
This renamed version of the former Uniform code for building conservation guidelines for retrofitting unreinforced masonry bearing wall buildings, reinforced concrete and reinforced masonry buildings, wood frame residential buildings, and concrete with masonry infill buildings.

Guidelines for Seismic Retrofit of Existing Buildings

Guidelines for Seismic Retrofit of Existing Buildings PDF Author:
Publisher:
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 74

Get Book Here

Book Description
This renamed version of the former Uniform code for building conservation guidelines for retrofitting unreinforced masonry bearing wall buildings, reinforced concrete and reinforced masonry buildings, wood frame residential buildings, and concrete with masonry infill buildings.

Guidelines for seismic retrofit of existing reinforced concrete buildings

Guidelines for seismic retrofit of existing reinforced concrete buildings PDF Author: Japan Building Disaster Prevention Association
Publisher:
ISBN:
Category : Buildings, Reinforced concrete
Languages : ja
Pages : 296

Get Book Here

Book Description


Seismic Retrofit of Existing Reinforced Concrete Buildings

Seismic Retrofit of Existing Reinforced Concrete Buildings PDF Author: Stelios Antoniou
Publisher: John Wiley & Sons
ISBN: 1119987342
Category : Technology & Engineering
Languages : en
Pages : 549

Get Book Here

Book Description
Seismic Retrofit of Existing Reinforced Concrete Buildings Understand the complexities and challenges of retrofitting building infrastructure Across the world, buildings are gradually becoming structurally unsound. Many were constructed before seismic load capacity was a mandatory component of building standards, and were often built with low-quality materials or using unsafe construction practices. Many more are simply aging, with materials degrading, and steel corroding. As a result, efforts are ongoing to retrofit existing structures, and to develop new techniques for assessing and enhancing seismic load capacity in order to create a safer building infrastructure worldwide. Seismic Retrofit of Existing Reinforced Concrete Buildings provides a thorough book-length discussion of these techniques and their applications. Balancing theory and practice, the book provides engineers with a broad base of knowledge from which to approach real-world seismic assessments and retrofitting projects. It incorporates knowledge and experience frequently omitted from the building design process for a fuller account of this critical engineering subfield. Seismic Retrofit of Existing Reinforced Concrete Buildings readers will also find: Detailed treatment of each available strengthening technique, complete with advantages and disadvantages In-depth guidelines to select a specific technique for a given building type and/or engineering scenario Step-by-step guidance through the assessment/retrofitting process Seismic Retrofit of Existing Reinforced Concrete Buildings is an ideal reference for civil and structural engineering professionals and advanced students, particularly those working in seismically active areas.

Seismic Assessment and Retrofit of Reinforced Concrete Buildings

Seismic Assessment and Retrofit of Reinforced Concrete Buildings PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940642
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
In most parts of the developed world, the building stock and the civil infrastructure are ageing and in constant need of maintenance, repair and upgrading. Moreover, in the light of our current knowledge and of modern codes, the majority of buildings stock and other types of structures in many parts of the world are substandard and deficient. This is especially so in earthquake-prone regions, as, even there, seismic design of structures is relatively recent. In those regions the major part of the seismic threat to human life and property comes from old buildings. Due to the infrastructure's increasing decay, frequently combined with the need for structural upgrading to meet more stringent design requirements (especially against seismic loads), structural retrofitting is becoming more and more important and receives today considerable emphasis throughout the world. In response to this need, a major part of the fib Model Code 2005, currently under development, is being devoted to structural conservation and maintenance. More importantly, in recognition of the importance of the seismic threat arising from existing substandard buildings, the first standards for structural upgrading to be promoted by the international engineering community and by regulatory authorities alike are for seismic rehabilitation of buildings. This is the case, for example, of Part 3: Strengthening and Repair of Buildings of Eurocode 8 (i. e. of the draft European Standard for earthquake-resistant design), and which is the only one among the current (2003) set of 58 Eurocodes attempting to address the problem of structural upgrading. It is also the case of the recent (2001) ASCE draft standard on Seismic evaluation of existing buildings and of the 1996 Law for promotion of seismic strengthening of existing reinforced concrete structures in Japan. As noted in Chapter 1 of this Bulletin, fib - as CEB and FIP did before - has placed considerable emphasis on assessment and rehabilitation of existing structures. The present Bulletin is a culmination of this effort in the special but very important field of seismic assessment and rehabilitation. It has been elaborated over a period of 4 years by Task Group 7.1 Assessment and retrofit of existing structures of fib Commission 7 Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In the course of its work the team had six plenary two-day meetings: in January 1999 in Pavia, Italy; in August 1999 in Raleigh, North Carolina; in February 2000 in Queenstown, New Zealand; in July 2000 in Patras, Greece; in March 2001 in Lausanne, Switzerland; and in August 2001 in Seattle, Washington. In October 2002 the final draft of the Bulletin was presented to public during the 1st fib Congress in Osaka. It was also there that it was approved by fib Commission 7 Seismic Design. The contents is structured into main chapters as follows: 1 Introduction - 2 Performance objectives and system considerations - 3 Review of seismic assessment procedures - 4 Strength and deformation capacity of non-seismically detailed components - 5 Seismic retrofitting techniques - 6 Probabilistic concepts and methods - 7 Case studies

Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001

Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Strengthening and Retrofitting of Existing Structures

Strengthening and Retrofitting of Existing Structures PDF Author:
Publisher:
ISBN: 9781642241815
Category :
Languages : en
Pages : 375

Get Book Here

Book Description
Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. The planning of changes to existing buildings differs from new planning through an important condition; the existing construction must be taken as the basis of all planning and building actions. The need for seismic retrofitting of an existing building can arise due to several reasons like: building not designed to code, subsequent updating of code and design practice, subsequent upgrading of seismic zone, deterioration of strength and aging, modification of existing structure, change in use of the building, etc. Seismic retrofit is primarily applied to achieve public safety, with various levels of structure and material survivability determined by economic considerations. In recent years, an increased urgency has been felt to strengthen the deficient buildings, as part of active disaster mitigation, and to work out the modifications that may be made to an existing structure to improve the structural performance during an earthquake. Seismic retrofitting schemes can be either global or local, based on how many members of the structures they are used for. Global Retrofit methods include conventional methods (increase seismic resistance of existing structures) or non-conventional methods (reduction of seismic demand). Strengthening and Retrofitting of Existing Structures is a compendium of cutting-edge trends of the research and existing practices in strengthening and retrofitting of structural elements, as well as the findings of a research endeavor initiated by the authors to investigate and develop a robust structural retrofitting scheme by utilizing elastomeric polymers to enhance the resistance of reinforced concrete (RC) structures. It addresses in detail specific techniques for the strengthening of traditional constructions, reinforced concrete buildings, bridges and their foundations. It also presents insight into the key issues relevant to seismic retrofit of concrete frame buildings. Many guidelines are reviewed regarding seismic rehabilitation of school, office, hospital and apartment buildings.

ASCE Standard, ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings

ASCE Standard, ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings PDF Author: American Society of Civil Engineers
Publisher:
ISBN: 9780784414859
Category : Buildings
Languages : en
Pages : 550

Get Book Here

Book Description
Standard ASCE/SEI 41-17 describes deficiency-based and systematic procedures that use performance-based principles to evaluate and retrofit existing buildings to withstand the effects of earthquakes.

Use of the standard for seismic capacity evaluation and the guidelines for seismic retrofit of existing reinforced concrete buildings

Use of the standard for seismic capacity evaluation and the guidelines for seismic retrofit of existing reinforced concrete buildings PDF Author: Japan Building Disaster Prevention Association
Publisher:
ISBN:
Category : Buildings, Reinforced concrete
Languages : ja
Pages : 212

Get Book Here

Book Description


Seismic Retrofit of Existing Buildings

Seismic Retrofit of Existing Buildings PDF Author: Matthew Fox
Publisher: Emerald Group Publishing
ISBN: 1835498361
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
Seismic Retrofit of Existing Buildings is a concise and easy-to-use guideline for practising engineers to assess and design successful seismic retrofit interventions for existing vulnerable buildings. It offers readers guidance on both conceptual design strategies and relevant detailed design considerations.

Seismic Design, Assessment and Retrofitting of Concrete Buildings

Seismic Design, Assessment and Retrofitting of Concrete Buildings PDF Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 1402098421
Category : Technology & Engineering
Languages : en
Pages : 757

Get Book Here

Book Description
Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO