Growth, Doping and Nanostructures of Gallium Nitride

Growth, Doping and Nanostructures of Gallium Nitride PDF Author: Xingmin Cai
Publisher:
ISBN:
Category : Gallium nitride
Languages : en
Pages : 242

Get Book Here

Book Description

Growth, Doping and Nanostructures of Gallium Nitride

Growth, Doping and Nanostructures of Gallium Nitride PDF Author: Xingmin Cai
Publisher:
ISBN:
Category : Gallium nitride
Languages : en
Pages : 242

Get Book Here

Book Description


Growth, Doping and Nanostructures of Gallium Nitride

Growth, Doping and Nanostructures of Gallium Nitride PDF Author: Xingmin Cai
Publisher:
ISBN: 9781361238165
Category :
Languages : en
Pages :

Get Book Here

Book Description


Oxide and Nitride Semiconductors

Oxide and Nitride Semiconductors PDF Author: Takafumi Yao
Publisher: Springer Science & Business Media
ISBN: 3540888470
Category : Technology & Engineering
Languages : en
Pages : 525

Get Book Here

Book Description
This is a unique book devoted to the important class of both oxide and nitride semiconductors. It covers processing, properties and applications of ZnO and GaN. The aim of this book is to provide the fundamental and technological issues for both ZnO and GaN.

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride PDF Author: Patrick Hofmann
Publisher: BoD – Books on Demand
ISBN: 3752884924
Category : Science
Languages : en
Pages : 166

Get Book Here

Book Description
This dissertation employs doping to investigate basic gallium nitride (GaN) crystal properties and to solve challenges of the hydride vapour phase epitaxy (HVPE) growth process. Whereas the first chapter is a short introduction to the history of the GaN single crystal growth, the 2nd chapter introduces to current crystal growth techniques, discusses properties of the GaN material system and the resulting influence on the applicable crystal growth techniques. HVPE, as a vapour phase epitaxy crystal growth method will be explained in greater detail, with focus on the used vertical reactor and its capabilities for doping. The 3rd chapter then focusses on point defects in GaN, specifically on intentionally introduced extrinsic point defects used for doping purposes, i.e. to achieve p-type, n-type or semi-insulating behaviour. Different dopants will be reviewed before the diffusion of point defects in a solid will be discussed. The in-situ introduction of iron, manganese, and carbon during crystal growth is employed in chapter 4 to compensate the unintentional doping (UID) of the GaN crystals, and therefore to achieve truly semi-insulating behaviour of the HVPE GaN. However the focus of this chapter lies on the characterisation of the pyroelectric coefficient (p), as semi-insulating properties are a necessary requirement for the applied Sharp-Garn measurement method. The creation of tensile stress due to in-situ silicon doping during GaN crystal growth is the topic of the 5th chapter. The tensile stress generation effect will be reproduced and the strain inside the crystal will be monitored ex-situ employing Raman spectroscopy. The n-type doping is achieved by using a vapour phase doping line and a process is developed to hinder the tensile strain generation effect. The 6th chapter concentrates on the delivery of the doping precursor via a solid state doping line, a newly developed doping method. Similar to chapter 5, the doping line is characterised carefully before the germanium doping is employed to the GaN growth. The focus lies on the homogeneity of the germanium doping and it is compared compared to the silicon doping and the vapour phase doping line. Benefits and drawbacks are discussed in conjunction with the obtained results. The germanium doping via solid state doping line is applied to the HVPE GaN growth process to measure accurately growth process related properties unique to the applied set of GaN growth parameters.

Two-Dimensional Nanostructures for Energy-Related Applications

Two-Dimensional Nanostructures for Energy-Related Applications PDF Author: Kuan Yew Cheong
Publisher: CRC Press
ISBN: 1315352850
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
This edited book focuses on the latest advances and development of utilizing two-dimensional nanostructures for energy and its related applications. Traditionally, the geometry of this material refers to "thin film" or "coating." The book covers three main parts, beginning with synthesis, processing, and property of two-dimensional nanostructures for active and passive layers followed by topics on characterization of the materials. It concludes with topics relating to utilization of the materials for usage in devises for energy and its related applications.

Iii-nitride Materials, Devices And Nano-structures

Iii-nitride Materials, Devices And Nano-structures PDF Author: Zhe Chuan Feng
Publisher: World Scientific
ISBN: 1786343207
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
Group III-Nitrides semiconductor materials, including GaN, InN, AlN, InGaN, AlGaN and AlInGaN, i.e. (Al, In, Ga)N, are excellent semiconductors, covering the spectral range from deep ultraviolet (DUV) to UV, visible and infrared, with unique properties very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved in recent years for research and development (R&D) in these materials and devices, such as high-power and high brightness UV-blue-green-white light emitting diodes (LEDs), UV-blue-green laser diodes (LDs), photo-detectors and various optoelectronics and electronics devices and applications.The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura 'for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources'. Red and green diodes had been invented since 1960s-70s but without blue LED. Despite considerable efforts, the blue LED had remained a challenge for a long time. The success and inventions on GaN-based LEDs were revolutionary and benefiting for mankind. III-Nitrides-based industry has formed and acquired rapid developments over the world. Incandescent light bulbs lit the 20th century and the 21st century will be lit by LED lamps.Before this book, the editor has edited two books, III-Nitride Semiconductor Materials (2006) and III-Nitride Devices and Nanoengineering (2008), both published by ICP/WSP, in the fields of III-Nitride. The developments of these materials and devices are moving rapidly. Many data or knowledge, some even just published only recently, have been modified and needed to be upgraded. This new book, III-Nitride Materials, Devices and Nano-Structures as the third instalment, will cover the rapid new developments and achievements in the III-Nitride fields, particularly those made since 2009.

IIl-nitride Nanowires and Heterostructures

IIl-nitride Nanowires and Heterostructures PDF Author: Xiang Zhou (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
Gallium nitride (GaN) and indium gallium nitride (InGaN) nanowires promise potential for further improving the electricity-to-light energy conversion efficiencies in light emitting diodes due to strain relaxation, reduced density of structural defects, and easier light extraction. Material quality and effective band engineering of such III-nitride nanowires are crucial for the design and fabrication of their optoelectronic applications such as LEDs, lasers and photodetectors. In this thesis, we first demonstrate effective control over GaN nanowire size, growth rate and structural quality through careful choice of metal seed particles. The differences in morphology, structural defects and optical properties of GaN nanowires grown by metalorganic chemical vapor deposition were studied systematically by electron microscopy and photoluminescence, and related to supersaturation in different seed particles and nanowire nucleation mechanisms. These results also demonstrate that systematic screening of seed materials is essential for synthesizing nanostructures with defect-free structures and other functional heterostructures. Next, challenges for nanoscale mapping of band engineering were successfully addressed through direct spatial correlation of optical properties to a variety of III-nitride heterostructures grown by molecular beam epitaxy, including GaN p-n junction nanorods, InGaN nanodisks, and GaN quantum disks and quantum wires. We demonstrate that effective doping, alloying and quantum confinement can be readily achieved in nanowire heterostructures, by cathodoluminescence in scanning transmission electron microscopy. P-n junction position and carrier diffusion lengths inside a single GaN nanorod were determined with nanometer spatial resolution. InGaN disk compositional uniformities were quantified from their optical emissions, which revealed substantial compositional inhomogeneity in bottom-up synthesized nanostructures. The studies on optical properties of individual GaN quantum structures demonstrated that small differences in the degree of quantum confinements resulted in substantial changes in the optical band gap. More importantly, reduced light emissions are directly correlated to regions containing grain boundaries, dislocations and stacking faults, which were formed as a result of nanorod coalescence and fluctuations in growth environment during nanostructure synthesis. Our findings demonstrate that controlling compositional and structural homogeneity, understanding defect formation mechanism and their effects on materials properties are key challenges to be addressed for developing large scale functional devices based on bottom-up synthesized nanostructured materials.

Electrical, Optical, and Defect Properties of Carbon-doped Gallium Nitride Grown by Molecular-beam Epitaxy

Electrical, Optical, and Defect Properties of Carbon-doped Gallium Nitride Grown by Molecular-beam Epitaxy PDF Author: Robert David Armitage
Publisher:
ISBN:
Category :
Languages : en
Pages : 462

Get Book Here

Book Description


Metal-organic Chemical Vapor Deposition Growth and Characterization of Gallium Nitride Nanostructures

Metal-organic Chemical Vapor Deposition Growth and Characterization of Gallium Nitride Nanostructures PDF Author: Jie Su
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description


Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0080560474
Category : Technology & Engineering
Languages : en
Pages : 862

Get Book Here

Book Description
The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Contributors are world leaders in the field Brings together all the factors which are essential in self-organisation of quantum nanostructures Reviews the current status of research and development in self-organised nanostructured materials Provides a ready source of information on a wide range of topics Useful to any scientist who is involved in nanotechnology Excellent starting point for workers entering the field Serves as an excellent reference manual