Growth and Characterization of Silicon Carbide for MEMS Pressure Sensors

Growth and Characterization of Silicon Carbide for MEMS Pressure Sensors PDF Author: Chien Hung Wu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Get Book Here

Book Description

Growth and Characterization of Silicon Carbide for MEMS Pressure Sensors

Growth and Characterization of Silicon Carbide for MEMS Pressure Sensors PDF Author: Chien Hung Wu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 424

Get Book Here

Book Description


Silicon Carbide Microsystems for Harsh Environments

Silicon Carbide Microsystems for Harsh Environments PDF Author: Muthu Wijesundara
Publisher: Springer
ISBN: 9781461428824
Category : Technology & Engineering
Languages : en
Pages : 232

Get Book Here

Book Description
Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods towards system level integration of components and key challenges are evaluated and discussed based on the current state of SiC materials processing and device technology. Issues such as temperature mismatch, process compatibility and temperature stability of individual components and how these issues manifest when building the system receive thorough investigation. The material covered not only reviews the state-of-the-art MEMS devices, provides a framework for the joining of electronics and MEMS along with packaging into usable harsh-environment-ready sensor modules.

Silicon Carbide

Silicon Carbide PDF Author: Moumita Mukherjee
Publisher: BoD – Books on Demand
ISBN: 9533079681
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
Silicon Carbide (SiC) and its polytypes, used primarily for grinding and high temperature ceramics, have been a part of human civilization for a long time. The inherent ability of SiC devices to operate with higher efficiency and lower environmental footprint than silicon-based devices at high temperatures and under high voltages pushes SiC on the verge of becoming the material of choice for high power electronics and optoelectronics. What is more important, SiC is emerging to become a template for graphene fabrication, and a material for the next generation of sub-32nm semiconductor devices. It is thus increasingly clear that SiC electronic systems will dominate the new energy and transport technologies of the 21st century. In 21 chapters of the book, special emphasis has been placed on the materials aspects and developments thereof. To that end, about 70% of the book addresses the theory, crystal growth, defects, surface and interface properties, characterization, and processing issues pertaining to SiC. The remaining 30% of the book covers the electronic device aspects of this material. Overall, this book will be valuable as a reference for SiC researchers for a few years to come. This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. The primary target for the book includes students, researchers, material and chemical engineers, semiconductor manufacturers and professionals who are interested in silicon carbide and its continuing progression.

Silicon Carbide Microelectromechanical Systems for Harsh Environments

Silicon Carbide Microelectromechanical Systems for Harsh Environments PDF Author: Rebecca Cheung
Publisher:
ISBN: 1860946240
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996-2002 (L M Porter & F A Mohammad); Dry Etching of SiC (SJ Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Key Features Includes contributions from technical and academic experts in the field of SiC Up-to-date information from scientific papers with relevant references Indispensible volume for academic researchers and industrial engineers working in MEMS and particularly SiC MEMS Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research.

Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology PDF Author: Tsunenobu Kimoto
Publisher: John Wiley & Sons
ISBN: 1118313550
Category : Technology & Engineering
Languages : en
Pages : 565

Get Book Here

Book Description
A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Silicon Carbide

Silicon Carbide PDF Author: Peter Friedrichs
Publisher: John Wiley & Sons
ISBN: 3527629068
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon. The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development.

Growth and Characterization of Silicon Carbide Thin Films and Nanowires

Growth and Characterization of Silicon Carbide Thin Films and Nanowires PDF Author: Lunet Estefany Luna
Publisher:
ISBN:
Category :
Languages : en
Pages : 109

Get Book Here

Book Description
Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. In terms of high-temperature microdevices, maintaining low-resistance electrical contact between metal and SiC remains a challenge. Although SiC itself maintains structural and electrical stability at high temperatures, the metallization schemes on SiC can suffer from silicide formation and oxidation when exposed to air. The second chapter presents efforts to develop stable metallization schemes to SiC. A stack consisting of Ni-induced solid-state graphitization of SiC and an atomic layer deposited layer of alumina is shown to yield low contact resistivity of Pt/Ti to polycrystalline n-type 3C-SiC films that is stable in air at 450 oC for 500 hours. The subsequent chapters focus on the growth and structural characterization of SiC nanowires. In addition to its structural stability in harsh-environments, there is interest in controlling SiC crystal structure or polytype formation. Over 200 different polytypes have been reported for SiC, with the most common being 3C, 4H, and 2H. In terms of SiC nanowire growth, the 3C or cubic phase is the most prevalent. However, as the stacking fault energy for SiC is on the order of a few meV, it is common to have a high density of stacking faults within a given SiC crystal structure. Thus, to enable reliable performance of SiC nanowires, a growth method that can promote a specific polytype or reduce stacking faults is of importance. Ni-catalyzed chemical vapor deposition method is employed for the growth of the nanowires. The effects of substrate structure and quality as well as the various growth parameters such as temperature, pressure, and post-deposition annealing are investigated. Most significant has been the growth and characterization of vertically aligned hexagonal phase (or 4H-like) SiC nanowires grown on commercially available 4H-SiC (0001). The studies presented in this thesis tackle issues in SiC metallization and nanowire growth in efforts to expand the versatility of SiC as a material platform for novel devices.

The Growth and Characterization of Beta Silicon Carbide ([beta]-Sic) Thin Films by Chemical Vapor Deposition in a Low Pressure Vertical Reactor

The Growth and Characterization of Beta Silicon Carbide ([beta]-Sic) Thin Films by Chemical Vapor Deposition in a Low Pressure Vertical Reactor PDF Author: Kenneth George Irvine
Publisher:
ISBN:
Category :
Languages : en
Pages : 170

Get Book Here

Book Description


Silicon Carbide

Silicon Carbide PDF Author: Peter Friedrichs
Publisher: Wiley-VCH
ISBN: 9783527409532
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon. The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development.

Silicon Carbide Microelectromechanical Systems For Harsh Environments

Silicon Carbide Microelectromechanical Systems For Harsh Environments PDF Author: Rebecca Cheung
Publisher: World Scientific
ISBN: 1783260025
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS.This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product./a