Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Metalorganic Vapor Phase Epitaxy (MOVPE)
Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Two-dimensional Materials
Author: Pramoda Kumar Nayak
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
Proceedings of the IEEE ... International Symposium on Compound Semiconductors
Author:
Publisher:
ISBN:
Category : Compound semiconductors
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Compound semiconductors
Languages : en
Pages : 264
Book Description
Semiconductor Nanostructures for Optoelectronic Devices
Author: Gyu-Chul Yi
Publisher: Springer Science & Business Media
ISBN: 3642224806
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 3642224806
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
Non-Equilibrium Dynamics of Semiconductors and Nanostructures
Author: Kong-Thon Tsen
Publisher: CRC Press
ISBN: 1351836927
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
The advent of the femto-second laser has enabled us to observe phenomena at the atomic timescale. One area to reap enormous benefits from this ability is ultrafast dynamics. Collecting the works of leading experts from around the globe, Non-Equilibrium Dynamics of Semiconductors and Nanostructures surveys recent developments in a variety of areas in ultrafast dynamics. In eight authoritative chapters illustrated by more than 150 figures, this book spans a broad range of new techniques and advances. It begins with a review of spin dynamics in a high-mobility two-dimensional electron gas, followed by the generation, propagation, and nonlinear properties of high-amplitude, ultrashort strain solitons in solids. The discussion then turns to nonlinear optical properties of nanoscale artificial dielectrics, optical properties of GaN self-assembled quantum dots, and optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based semiconductors. Rounding out the presentation, the book examines ultrafast non-equilibrium electron dynamics in metal nanoparticles, monochromatic acoustic phonons in GaAs, and electromagnetically induced transparency in semiconductor quantum wells. With its pedagogical approach and practical, up-to-date coverage, Non-Equilibrium Dynamics of Semiconductors and Nanostructures allows you to easily put the material into practice, whether you are a seasoned researcher or new to the field.
Publisher: CRC Press
ISBN: 1351836927
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
The advent of the femto-second laser has enabled us to observe phenomena at the atomic timescale. One area to reap enormous benefits from this ability is ultrafast dynamics. Collecting the works of leading experts from around the globe, Non-Equilibrium Dynamics of Semiconductors and Nanostructures surveys recent developments in a variety of areas in ultrafast dynamics. In eight authoritative chapters illustrated by more than 150 figures, this book spans a broad range of new techniques and advances. It begins with a review of spin dynamics in a high-mobility two-dimensional electron gas, followed by the generation, propagation, and nonlinear properties of high-amplitude, ultrashort strain solitons in solids. The discussion then turns to nonlinear optical properties of nanoscale artificial dielectrics, optical properties of GaN self-assembled quantum dots, and optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based semiconductors. Rounding out the presentation, the book examines ultrafast non-equilibrium electron dynamics in metal nanoparticles, monochromatic acoustic phonons in GaAs, and electromagnetically induced transparency in semiconductor quantum wells. With its pedagogical approach and practical, up-to-date coverage, Non-Equilibrium Dynamics of Semiconductors and Nanostructures allows you to easily put the material into practice, whether you are a seasoned researcher or new to the field.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Precursor Chemistry of Advanced Materials
Author: Roland A. Fischer
Publisher: Springer Science & Business Media
ISBN: 9783540016052
Category : Science
Languages : en
Pages : 240
Book Description
Material synthesis by the transformation of organometallic compounds (precursors) by vapor deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) has been in the forefront of modern day research and development of new materials. There exists a need for new routes for designing and synthesizing new precursors as well as the application of established molecular precursors to derive tuneable materials for technological demands. With regard to the precursor chemistry, a most detailed understanding of the mechanistic complexity of materials formation from molecular precursors is very important for further development of new processes and advanced materials. To emphasize and stimulate research in these areas, this volume comprises a selection of case studies covering various key-aspects of the interplay of precursor chemistry with the process conditions of materials formation, particularly looking at the similarities and differences of CVD, ALD and nanoparticle synthesis, e.g. colloid chemistry, involving tailored molecular precursors.
Publisher: Springer Science & Business Media
ISBN: 9783540016052
Category : Science
Languages : en
Pages : 240
Book Description
Material synthesis by the transformation of organometallic compounds (precursors) by vapor deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) has been in the forefront of modern day research and development of new materials. There exists a need for new routes for designing and synthesizing new precursors as well as the application of established molecular precursors to derive tuneable materials for technological demands. With regard to the precursor chemistry, a most detailed understanding of the mechanistic complexity of materials formation from molecular precursors is very important for further development of new processes and advanced materials. To emphasize and stimulate research in these areas, this volume comprises a selection of case studies covering various key-aspects of the interplay of precursor chemistry with the process conditions of materials formation, particularly looking at the similarities and differences of CVD, ALD and nanoparticle synthesis, e.g. colloid chemistry, involving tailored molecular precursors.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 860
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 860
Book Description
Semiconductor Nanostructures for Optoelectronic Applications
Author: Todd D. Steiner
Publisher: Artech House
ISBN: 9781580537520
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Publisher: Artech House
ISBN: 9781580537520
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Molecular Beam Epitaxy
Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790
Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790
Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community