Ground-water Conditions in Utah

Ground-water Conditions in Utah PDF Author:
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 132

Get Book Here

Book Description

Ground-water Conditions in Utah

Ground-water Conditions in Utah PDF Author:
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 132

Get Book Here

Book Description


Groundwater Hydrology of Springs

Groundwater Hydrology of Springs PDF Author: Neven Kresic
Publisher: Butterworth-Heinemann
ISBN: 0080949452
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
Groundwater Hydrology of Water Resource Series - Water is an essential environmental resource and one that needs to be properly managed. As the world places more emphasis on sustainable water supplies, the demand for expertise in hydrology and water resources continues to increase. This series is intended for professional engineers, who seek a firm foundation in hydrology and an ability to apply this knowledge to solve problems in water resource management. Future books in the series are: Groudwater Hydrology of Springs (2009), Groudwater Hydrology of River Basins (2009), Groudwater Hydrology of Aquifers (2010), and Groudwater Hydrology of Wetlands (2010). First utilized as a primary source of drinking water in the ancient world, springs continue to supply many of the world's cities with water. In recent years their long-term sustainability is under pressure due to an increased demand from groundwater users. Edited by two world-renowned hydrologists, Groundwater Hydrology of Springs: Theory, Management, and Sustainability will provide civil and environmental engineers with a comprehensive reference for managing and sustaining the water quality of Springs. With contributions from experts from around the world, this book cover many of the world's largest springs, providing a unique global perspective on how engineers around the world are utilizing engineering principles for coping with problems such as: mismanagement, overexploitation and their impacts both water quantity and quality. The book will be divided into two parts: part one will explain the theory and principles of hydrology as they apply to Springs while part two will provide a rare look into the engineering practices used to manage some of the most important Springs from around the world. - Description of the spring and the aquifer feeding it - Latest groundwater and contaminant transport models - Description of sources of aquifer use - Understanding of contamination and/or possible contamination - A plan for management and sustainability

Hydrogeology and Simulation of Groundwater Flow in Cedar Valley, Utah County, Utah

Hydrogeology and Simulation of Groundwater Flow in Cedar Valley, Utah County, Utah PDF Author: Juliette Lucy Jordan
Publisher: Utah Geological Survey
ISBN: 1557918686
Category : Aquifers
Languages : en
Pages : 231

Get Book Here

Book Description
This CD contains a 125-page comprehensive study of the hydrogeology of Cedar Valley, Utah County, located in north-central Utah. The report includes 72 figures; two plates, one of which is a potentiometric map of the basin-fill, bedrock, and several perched aquifers; and seven appendices of data. Field investigations included groundwater chemistry sampling, regular water-level monitoring, and multiple-well aquifer testing. The field data were incorporated into a 3D digital groundwater flow model using MODFLOW2000. Seventy percent of the recharge to the Cedar Valley aquifer system is from precipitation in the Oquirrh Mountains. Groundwater generally flows from west to east and exits the aquifer system mostly as interbasin flow through bedrock to the northeast and southeast. The groundwater model showed a 39-year (1969-2007) average recharge to the Cedar Valley groundwater system of 25,600 acre-feet per year and discharge of 25,200 acre-feet per year. A significant volume of precipitation recharge (perhaps 4300 acre-feet per year) does not interact with the basin-fill aquifer but travels within bedrock to discharge to adjacent valleys or as bedrock well discharge. 125 pages + 2 plates

Wetlands in Northern Salt Lake Valley, Salt Lake County, Utah

Wetlands in Northern Salt Lake Valley, Salt Lake County, Utah PDF Author: Sandow M. Yidana
Publisher: Utah Geological Survey
ISBN:
Category : Groundwater flow
Languages : en
Pages : 43

Get Book Here

Book Description
"This CD consists of a report (40 pages, 6 plates) of an evaluation by the Utah Geological Survey of threats to the Salt Lake Valley wetlands posed by changes in climatic conditions and by increased ground-water withdrawals accompanying population growth"--Back label of container.

Hydrogeology of Morgan Valley, Morgan County, Utah

Hydrogeology of Morgan Valley, Morgan County, Utah PDF Author: Janae Wallace
Publisher: Utah Geological Survey
ISBN: 1557918538
Category : CD-ROMs
Languages : en
Pages : 152

Get Book Here

Book Description
This report characterizes the relationship of geology to groundwater occurrence and flow, with emphasis on determining the thickness of the valley-fill aquifer and water yielding properties of the fractured rock aquifers. Develops a water budget for the drainage basin and classifies the groundwater quality and identifies the likely sources of nitrate in groundwater.

Investigation of land subsidence and earth fissures in Cedar Valley, Iron County, Utah

Investigation of land subsidence and earth fissures in Cedar Valley, Iron County, Utah PDF Author: Paul Inkenbrandt
Publisher: Utah Geological Survey
ISBN: 1557918910
Category : Base flow (Hydrology).
Languages : en
Pages : 122

Get Book Here

Book Description
This 116-page report presents the results of an investigation by the Utah Geological Survey of land subsidence and earth fissures in Cedar Valley, Iron County, Utah. Basin-fill sediments of the Cedar Valley Aquifer contain a high percentage of fine-grained material susceptible to compaction upon dewatering. Groundwater discharge in excess of recharge (groundwater mining) has lowered the potentiometric surface in Cedar Valley as much as 114 feet since 1939. Groundwater mining has caused permanent compaction of fine-grained sediments of the Cedar Valley aquifer, which has caused the land surface to subside, and a minimum of 8.3 miles of earth fissures to form. Recently acquired interferometric synthetic aperture radar imagery shows that land subsidence has affected approximately 100 mi² in Cedar Valley, but a lack of accurate historical benchmark elevation data over much of the valley prevents its detailed quantification. Continued groundwater mining and resultant subsidence will likely cause existing fissures to lengthen and new fissures to form which may eventually impact developed areas in Cedar Valley. This report also includes possible aquifer management options to help mitigate subsidence and fissure formation, and recommended guidelines for conducting subsidence-related hazard investigations prior to development.

Hydrogeologic Studies and Groundwater Monitoring in Snake Valley and Adjacent Hydrographic Areas, West-central Utah and East-central Nevada: report (304 pages), 4 Plates, Appendices and data tables

Hydrogeologic Studies and Groundwater Monitoring in Snake Valley and Adjacent Hydrographic Areas, West-central Utah and East-central Nevada: report (304 pages), 4 Plates, Appendices and data tables PDF Author: Hugh A. Hurlow
Publisher: Utah Geological Survey
ISBN: 155791902X
Category : Science
Languages : en
Pages : 304

Get Book Here

Book Description
This report (269 pages, 4 plates) presents hydrogeologic, groundwater-monitoring, and hydrochemical studies by the Utah Geological Survey (UGS) in Snake Valley, Tule Valley, and Fish Springs Flat in Millard and Juab Counties, west-central Utah. Data From the newly established UGS groundwater-monitoring network establish current baseline conditions, and will help quantify the effects of future variations in climate and groundwater pumping. New hydrochemical data show that groundwater quality is generally good, major-solute chemistry varies systematically from recharge to discharge areas, and suggest that most groundwater was recharged over one thousand years ago, implying low recharge rates and/or long or slow flow paths. Two aquifer tests yield estimates of transmissivity and storativity for the carbonate-rock and basin-fill aquifers. Variations in the potentiometric surface, hydrogeology, and hydrochemistry are consistent with the hypothesis of regional groundwater flow from Snake Valley northeast to Tule Valley and Fish Springs. Collectively, our work delineates groundwater levels, flow, and chemistry in Snake Valley and adjacent basins to a much greater degree than previously possible, and emphasizes the sensitivity of the groundwater system to possible increases in groundwater pumping.

Geology of Millard County, Utah

Geology of Millard County, Utah PDF Author: Lehi F. Hintze
Publisher: Utah Geological Survey
ISBN: 1557916926
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description
This bulletin serves not only to introduce the non-geologist to the rich geology of Millard County, but also to provide professional geologists with technical information on the stratigraphy, paleontology, and structural geology of the county. Millard County is unique among Utah’s counties in that it contains an exceptionally complete billion-year geologic record. This happened because until about 200 million years ago the area of present-day Millard County lay near sea level and was awash in shallow marine waters on a continental shelf upon which a stack of fossil-bearing strata more than 6 miles (10 km) thick slowly accumulated. This bulletin summarizes what is known about these strata, as well as younger rocks and surficial deposits in the county, and provides references to scientific papers that describe them in greater detail. Mountains North 30 x 60 (1:100,000-scale) quadrangles. These companion maps and this bulletin portray the geology of Millard County more completely and accurately than any previously published work.

Regional groundwater flow and water quality in the Virgin River Basin and surrounding areas, Utah and Arizona

Regional groundwater flow and water quality in the Virgin River Basin and surrounding areas, Utah and Arizona PDF Author: Paul Inkenbrandt
Publisher: Utah Geological Survey
ISBN: 155791883X
Category : Aquifer storage recovery
Languages : en
Pages : 58

Get Book Here

Book Description
In this 46-page report, we characterized the deep aquifer system and its connections to the overlying aquifers in the area of the Hurricane fault in Washington County by examining well logs, creating regional potentiometric-surface maps, compiling groundwater quality data, conducting gravity surveys, examining remote sensing data for surface lineaments, and determining areas for potential monitoring wells. Results of the study were: (1) R and C aquifer groundwater depths are > 500 feet in the I-15 corridor area, (2) a groundwater divide likely exists south of the Utah-Arizona state line, (3) groundwater flow follows open fracture systems, (4) fracture conductivity is highest near the fault, (5) dissolution of evaporites increase groundwater TDS, and (6) a well should be drilled into the Hurricane fault near Pintura.

Geology and Ground-water Chemistry, Curlew Valley, Northwestern Utah and South-Central Idaho, Implications for Hydrogeology

Geology and Ground-water Chemistry, Curlew Valley, Northwestern Utah and South-Central Idaho, Implications for Hydrogeology PDF Author: Hugh A. Hurlow
Publisher: Utah Geological Survey
ISBN: 1557917973
Category : Groundwater
Languages : en
Pages : 191

Get Book Here

Book Description
This report (185 pages and 2 plates) presents new and compiled geologic, geophysical, hydrologic, and hydrochemical data to delineate the regional ground-water flow system in Curlew Valley. Decreased precipitation combined with increased agricultural pumping in the central part of Curlew Valley since the late 1960s caused a steady decline in discharge at the Locomotive Springs complex. The report includes a compiled geologic map of the Curlew Valley surface-drainage basin at 1:100,000 scale and new geologic and hydrochemical data.