Gpusvcalibration

Gpusvcalibration PDF Author: Matthew Francis Dixon
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
In this paper we describe the gpusvcalibration R package for accelerating stochastic volatility model calibration on GPUs. The package is designed for use with existing CRAN packages for optimization such as DEOptim and nloptr. Stochastic volatility models are used extensively across the capital markets for pricing and risk management of exchange traded financial options. However, there are many challenges to calibration, including comparative assessment of the robustness of different models and optimization routines. For example, we observe that when fitted to sub-minute level mid-market quotes, models require frequent calibration every few minutes and the quality of the fit is routine sensitive. The R statistical software environment is popular with quantitative analysts in the financial industry partly because it facilitates application design space exploration. However, a typical R based implementation of a stochastic volatility model calibration on a CPU does not meet the performance requirements for sub-minute level trading, i.e. mid to high frequency trading. We identified the most computationally intensive part of the calibration process in R and off-loaded that to the GPU. We created a map-reduce interface to the computationally intensive kernel so that it can be easily integrated in a variety of R based calibration codes using our package. We demonstrate that the new R based implementation using our package is comparable in performance to a C/C++ GPU based calibration code.

Gpusvcalibration

Gpusvcalibration PDF Author: Matthew Francis Dixon
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
In this paper we describe the gpusvcalibration R package for accelerating stochastic volatility model calibration on GPUs. The package is designed for use with existing CRAN packages for optimization such as DEOptim and nloptr. Stochastic volatility models are used extensively across the capital markets for pricing and risk management of exchange traded financial options. However, there are many challenges to calibration, including comparative assessment of the robustness of different models and optimization routines. For example, we observe that when fitted to sub-minute level mid-market quotes, models require frequent calibration every few minutes and the quality of the fit is routine sensitive. The R statistical software environment is popular with quantitative analysts in the financial industry partly because it facilitates application design space exploration. However, a typical R based implementation of a stochastic volatility model calibration on a CPU does not meet the performance requirements for sub-minute level trading, i.e. mid to high frequency trading. We identified the most computationally intensive part of the calibration process in R and off-loaded that to the GPU. We created a map-reduce interface to the computationally intensive kernel so that it can be easily integrated in a variety of R based calibration codes using our package. We demonstrate that the new R based implementation using our package is comparable in performance to a C/C++ GPU based calibration code.

High-Performance Computational Solutions in Protein Bioinformatics

High-Performance Computational Solutions in Protein Bioinformatics PDF Author: Dariusz Mrozek
Publisher: Springer
ISBN: 3319069713
Category : Computers
Languages : en
Pages : 120

Get Book Here

Book Description
Recent developments in computer science enable algorithms previously perceived as too time-consuming to now be efficiently used for applications in bioinformatics and life sciences. This work focuses on proteins and their structures, protein structure similarity searching at main representation levels and various techniques that can be used to accelerate similarity searches. Divided into four parts, the first part provides a formal model of 3D protein structures for functional genomics, comparative bioinformatics and molecular modeling. The second part focuses on the use of multithreading for efficient approximate searching on protein secondary structures. The third and fourth parts concentrate on finding 3D protein structure similarities with the support of GPUs and cloud computing. Parts three and four both describe the acceleration of different methods. The text will be of interest to researchers and software developers working in the field of structural bioinformatics and biomedical databases.

Optimization

Optimization PDF Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1475741820
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Lange is a Springer author of other successful books. This is the first book that emphasizes the applications of optimization to statistics. The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics.

Financial Modelling with Jump Processes

Financial Modelling with Jump Processes PDF Author: Peter Tankov
Publisher: CRC Press
ISBN: 1135437947
Category : Business & Economics
Languages : en
Pages : 552

Get Book Here

Book Description
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic

The Heston Model and its Extensions in Matlab and C#

The Heston Model and its Extensions in Matlab and C# PDF Author: Fabrice D. Rouah
Publisher: John Wiley & Sons
ISBN: 1118695178
Category : Business & Economics
Languages : en
Pages : 437

Get Book Here

Book Description
Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.

Scalable Big Data Analytics for Protein Bioinformatics

Scalable Big Data Analytics for Protein Bioinformatics PDF Author: Dariusz Mrozek
Publisher: Springer
ISBN: 9783030075385
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This book presents a focus on proteins and their structures. The text describes various scalable solutions for protein structure similarity searching, carried out at main representation levels and for prediction of 3D structures of proteins. Emphasis is placed on techniques that can be used to accelerate similarity searches and protein structure modeling processes. The content of the book is divided into four parts. The first part provides background information on proteins and their representation levels, including a formal model of a 3D protein structure used in computational processes, and a brief overview of the technologies used in the solutions presented in the book. The second part of the book discusses Cloud services that are utilized in the development of scalable and reliable cloud applications for 3D protein structure similarity searching and protein structure prediction. The third part of the book shows the utilization of scalable Big Data computational frameworks, like Hadoop and Spark, in massive 3D protein structure alignments and identification of intrinsically disordered regions in protein structures. The fourth part of the book focuses on finding 3D protein structure similarities, accelerated with the use of GPUs and the use of multithreading and relational databases for efficient approximate searching on protein secondary structures. The book introduces advanced techniques and computational architectures that benefit from recent achievements in the field of computing and parallelism. Recent developments in computer science have allowed algorithms previously considered too time-consuming to now be efficiently used for applications in bioinformatics and the life sciences. Given its depth of coverage, the book will be of interest to researchers and software developers working in the fields of structural bioinformatics and biomedical databases.

Levy Processes in Finance

Levy Processes in Finance PDF Author: Wim Schoutens
Publisher: Wiley
ISBN: 9780470851562
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.

Novel Methods in Computational Finance

Novel Methods in Computational Finance PDF Author: Matthias Ehrhardt
Publisher: Springer
ISBN: 3319612824
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

The Complete Guide to Option Pricing Formulas

The Complete Guide to Option Pricing Formulas PDF Author: Espen Gaarder Haug
Publisher: Professional Finance & Investment
ISBN:
Category : Business & Economics
Languages : en
Pages : 586

Get Book Here

Book Description
Accompanying CD-ROM contains ... "all pricing formulas, with VBA code and ready-to-use Excel spreadsheets and 3D charts for Greeks (or Option Sensitivities)."--Jacket.

Tools for Computational Finance

Tools for Computational Finance PDF Author: Rüdiger U. Seydel
Publisher: Springer Science & Business Media
ISBN: 1447129938
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
The disciplines of financial engineering and numerical computation differ greatly, however computational methods are used in a number of ways across the field of finance. It is the aim of this book to explain how such methods work in financial engineering; specifically the use of numerical methods as tools for computational finance. By concentrating on the field of option pricing, a core task of financial engineering and risk analysis, this book explores a wide range of computational tools in a coherent and focused manner and will be of use to the entire field of computational finance. Starting with an introductory chapter that presents the financial and stochastic background, the remainder of the book goes on to detail computational methods using both stochastic and deterministic approaches. Now in its fifth edition, Tools for Computational Finance has been significantly revised and contains: A new chapter on incomplete markets which links to new appendices on Viscosity solutions and the Dupire equation; Several new parts throughout the book such as that on the calculation of sensitivities (Sect. 3.7) and the introduction of penalty methods and their application to a two-factor model (Sect. 6.7) Additional material in the field of analytical methods including Kim’s integral representation and its computation Guidelines for comparing algorithms and judging their efficiency An extended chapter on finite elements that now includes a discussion of two-asset options Additional exercises, figures and references Written from the perspective of an applied mathematician, methods are introduced as tools within the book for immediate and straightforward application. A ‘learning by calculating’ approach is adopted throughout this book enabling readers to explore several areas of the financial world. Interdisciplinary in nature, this book will appeal to advanced undergraduate students in mathematics, engineering and other scientific disciplines as well as professionals in financial engineering.