Author: Raymond M. Smullyan
Publisher: Oxford University Press
ISBN: 0195364376
Category : Mathematics
Languages : en
Pages : 156
Book Description
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Godel's Incompleteness Theorems
Author: Raymond M. Smullyan
Publisher: Oxford University Press
ISBN: 0195364376
Category : Mathematics
Languages : en
Pages : 156
Book Description
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Publisher: Oxford University Press
ISBN: 0195364376
Category : Mathematics
Languages : en
Pages : 156
Book Description
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Incompleteness
Author: Rebecca Goldstein
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
Godel's Proof
Author: Ernest Nagel
Publisher: Routledge
ISBN: 1134953992
Category : Philosophy
Languages : en
Pages : 109
Book Description
The first book to present a readable explanation of Godel's theorem to both scholars and non-specialists, this is a gripping combination of science and accessibility, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.
Publisher: Routledge
ISBN: 1134953992
Category : Philosophy
Languages : en
Pages : 109
Book Description
The first book to present a readable explanation of Godel's theorem to both scholars and non-specialists, this is a gripping combination of science and accessibility, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.
An Introduction to Gödel's Theorems
Author: Peter Smith
Publisher: Cambridge University Press
ISBN: 0521857848
Category : Mathematics
Languages : en
Pages : 376
Book Description
Peter Smith examines Gödel's Theorems, how they were established and why they matter.
Publisher: Cambridge University Press
ISBN: 0521857848
Category : Mathematics
Languages : en
Pages : 376
Book Description
Peter Smith examines Gödel's Theorems, how they were established and why they matter.
Gödel's Theorem
Author: Torkel Franzén
Publisher: CRC Press
ISBN: 1439876924
Category : Mathematics
Languages : en
Pages : 184
Book Description
"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Publisher: CRC Press
ISBN: 1439876924
Category : Mathematics
Languages : en
Pages : 184
Book Description
"Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel
Forever Undecided
Author: Raymond M. Smullyan
Publisher: Knopf
ISBN: 0307962466
Category : Mathematics
Languages : en
Pages : 286
Book Description
Forever Undecided is the most challenging yet of Raymond Smullyan’s puzzle collections. It is, at the same time, an introduction—ingenious, instructive, entertaining—to Gödel’s famous theorems. With all the wit and charm that have delighted readers of his previous books, Smullyan transports us once again to that magical island where knights always tell the truth and knaves always lie. Here we meet a new and amazing array of characters, visitors to the island, seeking to determine the natives’ identities. Among them: the census-taker McGregor; a philosophical-logician in search of his flighty bird-wife, Oona; and a regiment of Reasoners (timid ones, normal ones, conceited, modest, and peculiar ones) armed with the rules of propositional logic (if X is true, then so is Y). By following the Reasoners through brain-tingling exercises and adventures—including journeys into the “other possible worlds” of Kripke semantics—even the most illogical of us come to understand Gödel’s two great theorems on incompleteness and undecidability, some of their philosophical and mathematical implications, and why we, like Gödel himself, must remain Forever Undecided!
Publisher: Knopf
ISBN: 0307962466
Category : Mathematics
Languages : en
Pages : 286
Book Description
Forever Undecided is the most challenging yet of Raymond Smullyan’s puzzle collections. It is, at the same time, an introduction—ingenious, instructive, entertaining—to Gödel’s famous theorems. With all the wit and charm that have delighted readers of his previous books, Smullyan transports us once again to that magical island where knights always tell the truth and knaves always lie. Here we meet a new and amazing array of characters, visitors to the island, seeking to determine the natives’ identities. Among them: the census-taker McGregor; a philosophical-logician in search of his flighty bird-wife, Oona; and a regiment of Reasoners (timid ones, normal ones, conceited, modest, and peculiar ones) armed with the rules of propositional logic (if X is true, then so is Y). By following the Reasoners through brain-tingling exercises and adventures—including journeys into the “other possible worlds” of Kripke semantics—even the most illogical of us come to understand Gödel’s two great theorems on incompleteness and undecidability, some of their philosophical and mathematical implications, and why we, like Gödel himself, must remain Forever Undecided!
Gödel's Incompleteness Theorems
Author: Juliette Kennedy
Publisher: Cambridge University Press
ISBN: 1108990096
Category : Philosophy
Languages : en
Pages : 152
Book Description
This Element takes a deep dive into Gödel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Gödel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
Publisher: Cambridge University Press
ISBN: 1108990096
Category : Philosophy
Languages : en
Pages : 152
Book Description
This Element takes a deep dive into Gödel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Gödel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Gödel's Theorems and Zermelo's Axioms
Author: Lorenz Halbeisen
Publisher: Springer Nature
ISBN: 3030522792
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
Publisher: Springer Nature
ISBN: 3030522792
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
Gödel's Incompleteness Theorem
Author: Vladimir Andreevič Uspenskij
Publisher:
ISBN:
Category : Gödel's theorem
Languages : en
Pages : 108
Book Description
Publisher:
ISBN:
Category : Gödel's theorem
Languages : en
Pages : 108
Book Description