Author: Cristian Anghel
Publisher: American Mathematical Soc.
ISBN: 1470428385
Category : Mathematics
Languages : en
Pages : 120
Book Description
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.
Globally Generated Vector Bundles with Small $c_1$ on Projective Spaces
Author: Cristian Anghel
Publisher: American Mathematical Soc.
ISBN: 1470428385
Category : Mathematics
Languages : en
Pages : 120
Book Description
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.
Publisher: American Mathematical Soc.
ISBN: 1470428385
Category : Mathematics
Languages : en
Pages : 120
Book Description
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.
Flat Rank Two Vector Bundles on Genus Two Curves
Author: Viktoria Heu
Publisher: American Mathematical Soc.
ISBN: 1470435667
Category : Mathematics
Languages : en
Pages : 116
Book Description
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Publisher: American Mathematical Soc.
ISBN: 1470435667
Category : Mathematics
Languages : en
Pages : 116
Book Description
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Automorphisms ofTwo-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane
Author: William Goldman
Publisher: American Mathematical Soc.
ISBN: 1470436140
Category : Mathematics
Languages : en
Pages : 92
Book Description
The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .
Publisher: American Mathematical Soc.
ISBN: 1470436140
Category : Mathematics
Languages : en
Pages : 92
Book Description
The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .
Spinors on Singular Spaces and the Topology of Causal Fermion Systems
Author: Felix Finster
Publisher: American Mathematical Soc.
ISBN: 1470436213
Category : Mathematics
Languages : en
Pages : 96
Book Description
Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
Publisher: American Mathematical Soc.
ISBN: 1470436213
Category : Mathematics
Languages : en
Pages : 96
Book Description
Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
On Space-Time Quasiconcave Solutions of the Heat Equation
Author: Chuanqiang Chen
Publisher: American Mathematical Soc.
ISBN: 1470435241
Category : Mathematics
Languages : en
Pages : 94
Book Description
In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain their ideas and for completeness, the authors also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function.
Publisher: American Mathematical Soc.
ISBN: 1470435241
Category : Mathematics
Languages : en
Pages : 94
Book Description
In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain their ideas and for completeness, the authors also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function.
Covering Dimension of C*-Algebras and 2-Coloured Classification
Author: Joan Bosa
Publisher: American Mathematical Soc.
ISBN: 1470434709
Category : Mathematics
Languages : en
Pages : 112
Book Description
The authors introduce the concept of finitely coloured equivalence for unital -homomorphisms between -algebras, for which unitary equivalence is the -coloured case. They use this notion to classify -homomorphisms from separable, unital, nuclear -algebras into ultrapowers of simple, unital, nuclear, -stable -algebras with compact extremal trace space up to -coloured equivalence by their behaviour on traces; this is based on a -coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, -stable -algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a “homotopy equivalence implies isomorphism” result for large classes of -algebras with finite nuclear dimension.
Publisher: American Mathematical Soc.
ISBN: 1470434709
Category : Mathematics
Languages : en
Pages : 112
Book Description
The authors introduce the concept of finitely coloured equivalence for unital -homomorphisms between -algebras, for which unitary equivalence is the -coloured case. They use this notion to classify -homomorphisms from separable, unital, nuclear -algebras into ultrapowers of simple, unital, nuclear, -stable -algebras with compact extremal trace space up to -coloured equivalence by their behaviour on traces; this is based on a -coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, -stable -algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a “homotopy equivalence implies isomorphism” result for large classes of -algebras with finite nuclear dimension.
Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces
Author: Oliver Lorscheid
Publisher: American Mathematical Soc.
ISBN: 1470436477
Category : Education
Languages : en
Pages : 90
Book Description
Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.
Publisher: American Mathematical Soc.
ISBN: 1470436477
Category : Education
Languages : en
Pages : 90
Book Description
Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.
Generalized Mercer Kernels and Reproducing Kernel Banach Spaces
Author: Yuesheng Xu
Publisher: American Mathematical Soc.
ISBN: 1470435500
Category : Mathematics
Languages : en
Pages : 134
Book Description
This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1≤p≤∞ .
Publisher: American Mathematical Soc.
ISBN: 1470435500
Category : Mathematics
Languages : en
Pages : 134
Book Description
This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1≤p≤∞ .
CR Embedded Submanifolds of CR Manifolds
Author: Sean N. Curry
Publisher: American Mathematical Soc.
ISBN: 1470435446
Category : Mathematics
Languages : en
Pages : 94
Book Description
The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This also leads to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis the authors develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds. The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. The authors conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.
Publisher: American Mathematical Soc.
ISBN: 1470435446
Category : Mathematics
Languages : en
Pages : 94
Book Description
The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This also leads to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis the authors develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds. The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. The authors conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.
Global Regularity for 2D Water Waves with Surface Tension
Author: Alexandru D. Ionescu
Publisher: American Mathematical Soc.
ISBN: 1470431033
Category : Mathematics
Languages : en
Pages : 136
Book Description
The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors' analysis is to develop a sufficiently robust method (the “quasilinear I-method”) which allows the authors to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called “division problem”). As a result, they are able to consider a suitable class of perturbations with finite energy, but no other momentum conditions. Part of the authors' analysis relies on a new treatment of the Dirichlet-Neumann operator in dimension two which is of independent interest. As a consequence, the results in this paper are self-contained.
Publisher: American Mathematical Soc.
ISBN: 1470431033
Category : Mathematics
Languages : en
Pages : 136
Book Description
The authors consider the full irrotational water waves system with surface tension and no gravity in dimension two (the capillary waves system), and prove global regularity and modified scattering for suitably small and localized perturbations of a flat interface. An important point of the authors' analysis is to develop a sufficiently robust method (the “quasilinear I-method”) which allows the authors to deal with strong singularities arising from time resonances in the applications of the normal form method (the so-called “division problem”). As a result, they are able to consider a suitable class of perturbations with finite energy, but no other momentum conditions. Part of the authors' analysis relies on a new treatment of the Dirichlet-Neumann operator in dimension two which is of independent interest. As a consequence, the results in this paper are self-contained.