Author: Steen Markvorsen
Publisher: Birkhäuser
ISBN: 3034880553
Category : Mathematics
Languages : en
Pages : 96
Book Description
This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.
Global Riemannian Geometry: Curvature and Topology
Global Riemannian Geometry
Author: Thomas Willmore
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 226
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 226
Book Description
Comparison Theorems in Riemannian Geometry
Author: Jeff Cheeger
Publisher: Newnes
ISBN: 0444107649
Category : Computers
Languages : en
Pages : 183
Book Description
Comparison Theorems in Riemannian Geometry
Publisher: Newnes
ISBN: 0444107649
Category : Computers
Languages : en
Pages : 183
Book Description
Comparison Theorems in Riemannian Geometry
Global Differential Geometry
Author: Christian Bär
Publisher: Springer Science & Business Media
ISBN: 3642228429
Category : Mathematics
Languages : en
Pages : 520
Book Description
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642228429
Category : Mathematics
Languages : en
Pages : 520
Book Description
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
Riemannian Geometry
Author: Takashi Sakai
Publisher: American Mathematical Soc.
ISBN: 9780821889565
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume is an English translation of Sakai's textbook on Riemannian Geometry which was originally written in Japanese and published in 1992. The author's intent behind the original book was to provide to advanced undergraduate and graudate students an introduction to modern Riemannian geometry that could also serve as a reference. The book begins with an explanation of the fundamental notion of Riemannian geometry. Special emphasis is placed on understandability and readability, to guide students who are new to this area. The remaining chapters deal with various topics in Riemannian geometry, with the main focus on comparison methods and their applications.
Publisher: American Mathematical Soc.
ISBN: 9780821889565
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume is an English translation of Sakai's textbook on Riemannian Geometry which was originally written in Japanese and published in 1992. The author's intent behind the original book was to provide to advanced undergraduate and graudate students an introduction to modern Riemannian geometry that could also serve as a reference. The book begins with an explanation of the fundamental notion of Riemannian geometry. Special emphasis is placed on understandability and readability, to guide students who are new to this area. The remaining chapters deal with various topics in Riemannian geometry, with the main focus on comparison methods and their applications.
Riemannian Geometry
Author: Peter Petersen
Publisher: Springer Science & Business Media
ISBN: 1475764340
Category : Mathematics
Languages : en
Pages : 443
Book Description
Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.
Publisher: Springer Science & Business Media
ISBN: 1475764340
Category : Mathematics
Languages : en
Pages : 443
Book Description
Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.
Riemannian Geometry in an Orthogonal Frame
Author: Elie Cartan
Publisher: World Scientific
ISBN: 9789810247478
Category : Mathematics
Languages : en
Pages : 284
Book Description
Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.
Publisher: World Scientific
ISBN: 9789810247478
Category : Mathematics
Languages : en
Pages : 284
Book Description
Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.
Semi-Riemannian Geometry With Applications to Relativity
Author: Barrett O'Neill
Publisher: Academic Press
ISBN: 0080570577
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.
Publisher: Academic Press
ISBN: 0080570577
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.
Dirac Operators in Riemannian Geometry
Author: Thomas Friedrich
Publisher: American Mathematical Soc.
ISBN: 0821820559
Category : Mathematics
Languages : en
Pages : 213
Book Description
For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.
Publisher: American Mathematical Soc.
ISBN: 0821820559
Category : Mathematics
Languages : en
Pages : 213
Book Description
For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.
On the Hypotheses Which Lie at the Bases of Geometry
Author: Bernhard Riemann
Publisher: Birkhäuser
ISBN: 3319260421
Category : Mathematics
Languages : en
Pages : 181
Book Description
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Publisher: Birkhäuser
ISBN: 3319260421
Category : Mathematics
Languages : en
Pages : 181
Book Description
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.