Global discrete artificial boundary conditions for timedependent wave propagation

Global discrete artificial boundary conditions for timedependent wave propagation PDF Author:
Publisher: DIANE Publishing
ISBN: 142899579X
Category :
Languages : en
Pages : 36

Get Book

Book Description


Global Discrete Artificial Boundary Conditions for Time-dependent Wave Propagation

Global Discrete Artificial Boundary Conditions for Time-dependent Wave Propagation PDF Author: Victor S. Ryabenkii
Publisher: DIANE Publishing
ISBN:
Category : Boundary value problems
Languages : en
Pages : 42

Get Book

Book Description
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels', nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.

Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 PDF Author: Gary Cohen
Publisher: Springer Science & Business Media
ISBN: 3642558569
Category : Technology & Engineering
Languages : en
Pages : 923

Get Book

Book Description
This volume includes articles on the mathematical modeling and numerical simulation of various wave phenomena. For many years Waves 2003 and its five prior conferences have been an important forum for discussions on wave propagation. The topic is equally important for fundamental sciences, engineering, mathematics and, in particular, for industrial applications. Areas of specific interest are acoustics, electromagnetics, elasticity and related inverse and optimization problems. This book gives an extensive overview of recent developments in a very active field of scientific computing.

Fundamental Trends in Fluid-Structure Interaction

Fundamental Trends in Fluid-Structure Interaction PDF Author:
Publisher:
ISBN: 9814465402
Category :
Languages : en
Pages :

Get Book

Book Description


High-order Two-way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering

High-order Two-way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering PDF Author: Gadi Fibich
Publisher:
ISBN:
Category :
Languages : en
Pages : 46

Get Book

Book Description
When solving linear scattering problems, one typically first solves for the impinging wave in the absence of obstacles. Then, by linear superposition, the original problem is reduced to one that involves only the scattered waves driven by the values of the impinging field at the surface of the obstacles. In addition, when the original domain is unbounded, special artificial boundary conditions (ABCs) that would guarantee the reflectionless propagation of waves have to be set at the outer boundary of the finite computational domain. The situation becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction. We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation that models the laser beam propagation in a medium with nonlinear index of refraction. In this case, the forward propagation is accompanied by backscattering, i.e., generation of waves in the direction opposite to that of the incoming signal. Our two-way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values of the incoming wave. The ABCs are obtained for a fourth-order accurate discretization to the Helmholtz operator; the fourth-order grid convergence is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear case using the two-way ABC which, unlike the traditional Dirichlet boundary condition, allows for direct calculation of the magnitude of backscattering.

Absorbing Boundaries and Layers, Domain Decomposition Methods

Absorbing Boundaries and Layers, Domain Decomposition Methods PDF Author: L. Tourrette
Publisher: Nova Publishers
ISBN: 9781560729402
Category : Mathematics
Languages : en
Pages : 396

Get Book

Book Description
CD-ROM contains: Sections omitted from printing of text.

Topics in Computational Wave Propagation

Topics in Computational Wave Propagation PDF Author: Mark Ainsworth
Publisher: Springer Science & Business Media
ISBN: 3642554830
Category : Mathematics
Languages : en
Pages : 408

Get Book

Book Description
These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Activities of ICASE

Activities of ICASE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book

Book Description


Time-dependent Wave Transport Theory

Time-dependent Wave Transport Theory PDF Author: Rudolph W. Preisendorfer
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 48

Get Book

Book Description


Topics in Computational Wave Propagation

Topics in Computational Wave Propagation PDF Author: Mark Ainsworth
Publisher: Springer
ISBN: 9783642554841
Category : Mathematics
Languages : en
Pages : 410

Get Book

Book Description
These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.