Author: J. M. Landsberg
Publisher: American Mathematical Society
ISBN: 1470479052
Category : Mathematics
Languages : en
Pages : 464
Book Description
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Tensors: Geometry and Applications
Geometry and its Applications in Arts, Nature and Technology
Author: Georg Glaeser
Publisher: Springer Nature
ISBN: 3030613984
Category : Mathematics
Languages : en
Pages : 708
Book Description
This book returns geometry to its natural habitats: the arts, nature and technology. Throughout the book, geometry comes alive as a tool to unlock the understanding of our world. Assuming only familiarity with high school mathematics, the book invites the reader to discover geometry through examples from biology, astronomy, architecture, design, photography, drawing, engineering and more. Lavishly illustrated with over 1200 figures, all of the geometric results are carefully derived from scratch, with topics from differential, projective and non-Euclidean geometry, as well as kinematics, introduced as the need arises. The mathematical results contained in the book range from very basic facts to recent results, and mathematical proofs are included although not necessary for comprehension. With its wide range of geometric applications, this self-contained volume demonstrates the ubiquity of geometry in our world, and may serve as a source of inspiration for architects, artists, designers, engineers, and natural scientists. This new edition has been completely revised and updated, with new topics and many new illustrations.
Publisher: Springer Nature
ISBN: 3030613984
Category : Mathematics
Languages : en
Pages : 708
Book Description
This book returns geometry to its natural habitats: the arts, nature and technology. Throughout the book, geometry comes alive as a tool to unlock the understanding of our world. Assuming only familiarity with high school mathematics, the book invites the reader to discover geometry through examples from biology, astronomy, architecture, design, photography, drawing, engineering and more. Lavishly illustrated with over 1200 figures, all of the geometric results are carefully derived from scratch, with topics from differential, projective and non-Euclidean geometry, as well as kinematics, introduced as the need arises. The mathematical results contained in the book range from very basic facts to recent results, and mathematical proofs are included although not necessary for comprehension. With its wide range of geometric applications, this self-contained volume demonstrates the ubiquity of geometry in our world, and may serve as a source of inspiration for architects, artists, designers, engineers, and natural scientists. This new edition has been completely revised and updated, with new topics and many new illustrations.
The Advanced Geometry of Plane Curves and Their Applications
Author: C. Zwikker
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Modern Geometry with Applications
Author: George A. Jennings
Publisher: Springer Science & Business Media
ISBN: 1461208556
Category : Mathematics
Languages : en
Pages : 193
Book Description
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
Publisher: Springer Science & Business Media
ISBN: 1461208556
Category : Mathematics
Languages : en
Pages : 193
Book Description
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
Differential Geometry and Its Applications
Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Euclidean Geometry in Mathematical Olympiads
Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 329
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 329
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Spherical Geometry and Its Applications
Author: Marshall A. Whittlesey
Publisher: CRC Press
ISBN: 1000627527
Category : Mathematics
Languages : en
Pages : 262
Book Description
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world – but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
Publisher: CRC Press
ISBN: 1000627527
Category : Mathematics
Languages : en
Pages : 262
Book Description
Spherical Geometry and Its Applications introduces spherical geometry and its practical applications in a mathematically rigorous form. The text can serve as a course in spherical geometry for mathematics majors. Readers from various academic backgrounds can comprehend various approaches to the subject. The book introduces an axiomatic system for spherical geometry and uses it to prove the main theorems of the subject. It also provides an alternate approach using quaternions. The author illustrates how a traditional axiomatic system for plane geometry can be modified to produce a different geometric world – but a geometric world that is no less real than the geometric world of the plane. Features: A well-rounded introduction to spherical geometry Provides several proofs of some theorems to appeal to larger audiences Presents principal applications: the study of the surface of the earth, the study of stars and planets in the sky, the study of three- and four-dimensional polyhedra, mappings of the sphere, and crystallography Many problems are based on propositions from the ancient text Sphaerica of Menelaus
Elementary Geometry from an Advanced Standpoint
Author: Edwin E. Moise
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
Computational Geometry
Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370
Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370
Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.
Advanced Euclidean Geometry
Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.