Author: Alexandru T. Balaban
Publisher: Springer Science & Business Media
ISBN: 0306469073
Category : Science
Languages : en
Pages : 436
Book Description
Even high-speed supercomputers cannot easily convert traditional two-dimensional databases from chemical topology into the three-dimensional ones demanded by today's chemists, particularly those working in drug design. This fascinating volume resolves this problem by positing mathematical and topological models which greatly expand the capabilities of chemical graph theory. The authors examine QSAR and molecular similarity studies, the relationship between the sequence of amino acids and the less familiar secondary and tertiary protein structures, and new topological methods.
From Chemical Topology to Three-Dimensional Geometry
Author: Alexandru T. Balaban
Publisher: Springer Science & Business Media
ISBN: 0306469073
Category : Science
Languages : en
Pages : 436
Book Description
Even high-speed supercomputers cannot easily convert traditional two-dimensional databases from chemical topology into the three-dimensional ones demanded by today's chemists, particularly those working in drug design. This fascinating volume resolves this problem by positing mathematical and topological models which greatly expand the capabilities of chemical graph theory. The authors examine QSAR and molecular similarity studies, the relationship between the sequence of amino acids and the less familiar secondary and tertiary protein structures, and new topological methods.
Publisher: Springer Science & Business Media
ISBN: 0306469073
Category : Science
Languages : en
Pages : 436
Book Description
Even high-speed supercomputers cannot easily convert traditional two-dimensional databases from chemical topology into the three-dimensional ones demanded by today's chemists, particularly those working in drug design. This fascinating volume resolves this problem by positing mathematical and topological models which greatly expand the capabilities of chemical graph theory. The authors examine QSAR and molecular similarity studies, the relationship between the sequence of amino acids and the less familiar secondary and tertiary protein structures, and new topological methods.
Geometric Structure of Chemistry-Relevant Graphs
Author: Michel-Marie Deza
Publisher: Springer
ISBN: 8132224493
Category : Mathematics
Languages : en
Pages : 220
Book Description
The central theme of the present book is zigzags and central-circuits of three- or four-regular plane graphs, which allow a double covering or covering of the edgeset to be obtained. The book presents zigzag and central circuit structures of geometric fullerenes and several other classes of graph of interest in the fields of chemistry and mathematics. It also discusses the symmetries, parameterization and the Goldberg–Coxeter construction for those graphs. It is the first book on this subject, presenting full structure theory of such graphs. While many previous publications only addressed particular questions about selected graphs, this book is based on numerous computations and presents extensive data (tables and figures), as well as algorithmic and computational information. It will be of interest to researchers and students of discrete geometry, mathematical chemistry and combinatorics, as well as to lay mathematicians.
Publisher: Springer
ISBN: 8132224493
Category : Mathematics
Languages : en
Pages : 220
Book Description
The central theme of the present book is zigzags and central-circuits of three- or four-regular plane graphs, which allow a double covering or covering of the edgeset to be obtained. The book presents zigzag and central circuit structures of geometric fullerenes and several other classes of graph of interest in the fields of chemistry and mathematics. It also discusses the symmetries, parameterization and the Goldberg–Coxeter construction for those graphs. It is the first book on this subject, presenting full structure theory of such graphs. While many previous publications only addressed particular questions about selected graphs, this book is based on numerous computations and presents extensive data (tables and figures), as well as algorithmic and computational information. It will be of interest to researchers and students of discrete geometry, mathematical chemistry and combinatorics, as well as to lay mathematicians.
Graph Theoretical Approaches to Chemical Reactivity
Author: Danail D. Bonchev
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Publisher: Springer Science & Business Media
ISBN: 9401112029
Category : Science
Languages : en
Pages : 291
Book Description
The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.
Geometry of Chemical Graphs
Author: Michel Deza
Publisher:
ISBN: 9781306148672
Category :
Languages : en
Pages :
Book Description
Mathematical tools for the study of generalisations of graphs appearing in the modelling of molecular structures.
Publisher:
ISBN: 9781306148672
Category :
Languages : en
Pages :
Book Description
Mathematical tools for the study of generalisations of graphs appearing in the modelling of molecular structures.
Chemical Topology
Author: D Bonchev
Publisher: CRC Press
ISBN: 9789056991746
Category : Science
Languages : en
Pages : 354
Book Description
Topology is becoming increasingly important in chemistry because of its rapidly growing number of applications. Here, its many uses are reviewed and the authors anticipate what future developments might bring. This work shows how significant new insights can be gained by representing molecular species as topological structures known as topographs. The text explores carbon structures, establishing how the stability of fullerene species can be accounted for and also predicting which fullerenes will be most stable. It is pointed out that molecular topology, rather than molecular geometry, characterizes molecular shape and various tools for shape characterization are described. Several of the fascinating ideas that arise from regarding topology as a unifying principle in chemical bonding theory are discussed, and in particular, the novel concept of the molecular topoid is shown to have numerous uses. The topological description of polymers is examined and the reader is gently guided through the realms of branched and tangled polymers. Overall, this work outlines the fact that topology is not only a theoretical discipline but also one that has practical applications and high relevance to the whole domain of chemistry.
Publisher: CRC Press
ISBN: 9789056991746
Category : Science
Languages : en
Pages : 354
Book Description
Topology is becoming increasingly important in chemistry because of its rapidly growing number of applications. Here, its many uses are reviewed and the authors anticipate what future developments might bring. This work shows how significant new insights can be gained by representing molecular species as topological structures known as topographs. The text explores carbon structures, establishing how the stability of fullerene species can be accounted for and also predicting which fullerenes will be most stable. It is pointed out that molecular topology, rather than molecular geometry, characterizes molecular shape and various tools for shape characterization are described. Several of the fascinating ideas that arise from regarding topology as a unifying principle in chemical bonding theory are discussed, and in particular, the novel concept of the molecular topoid is shown to have numerous uses. The topological description of polymers is examined and the reader is gently guided through the realms of branched and tangled polymers. Overall, this work outlines the fact that topology is not only a theoretical discipline but also one that has practical applications and high relevance to the whole domain of chemistry.
Chemical Graph Theory
Author: D Bonchev
Publisher: Routledge
ISBN: 1351461591
Category : Science
Languages : en
Pages : 310
Book Description
This volume presents the fundamentals of graph theory and then goes on to discuss specific chemical applications. Chapter 1 provides a historical setting for the current upsurge of interest in chemical graph theory. Chapter 2 gives a full background of the basic ideas and mathematical formalism of graph theory and includes such chemically relevant notions as connectedness, graph matrix representations, metric properties, symmetry and operations on graphs. This is followed by a discussion on chemical nomenclature and the trends in its rationalization by using graph theory, which has important implications for the storage and retrieval of chemical information. This volume also contains a detailed discussion of the relevance of graph-theoretical polynomials; it describes methodologies for the enumeration of isomers, incorporating the classical Polya method, as well as more recent approaches.
Publisher: Routledge
ISBN: 1351461591
Category : Science
Languages : en
Pages : 310
Book Description
This volume presents the fundamentals of graph theory and then goes on to discuss specific chemical applications. Chapter 1 provides a historical setting for the current upsurge of interest in chemical graph theory. Chapter 2 gives a full background of the basic ideas and mathematical formalism of graph theory and includes such chemically relevant notions as connectedness, graph matrix representations, metric properties, symmetry and operations on graphs. This is followed by a discussion on chemical nomenclature and the trends in its rationalization by using graph theory, which has important implications for the storage and retrieval of chemical information. This volume also contains a detailed discussion of the relevance of graph-theoretical polynomials; it describes methodologies for the enumeration of isomers, incorporating the classical Polya method, as well as more recent approaches.
Chemical Applications of Graph Theory
Author: A. T. Balaban
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 412
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 412
Book Description
Graph Structure and Monadic Second-Order Logic
Author: Bruno Courcelle
Publisher: Cambridge University Press
ISBN: 0521898331
Category : Mathematics
Languages : en
Pages : 743
Book Description
The study of graph structure has advanced in recent years with great strides: finite graphs can be described algebraically, enabling them to be constructed out of more basic elements. Separately the properties of graphs can be studied in a logical language called monadic second-order logic. In this book, these two features of graph structure are brought together for the first time in a presentation that unifies and synthesizes research over the last 25 years. The authors not only provide a thorough description of the theory, but also detail its applications, on the one hand to the construction of graph algorithms, and, on the other to the extension of formal language theory to finite graphs. Consequently the book will be of interest to graduate students and researchers in graph theory, finite model theory, formal language theory, and complexity theory.
Publisher: Cambridge University Press
ISBN: 0521898331
Category : Mathematics
Languages : en
Pages : 743
Book Description
The study of graph structure has advanced in recent years with great strides: finite graphs can be described algebraically, enabling them to be constructed out of more basic elements. Separately the properties of graphs can be studied in a logical language called monadic second-order logic. In this book, these two features of graph structure are brought together for the first time in a presentation that unifies and synthesizes research over the last 25 years. The authors not only provide a thorough description of the theory, but also detail its applications, on the one hand to the construction of graph algorithms, and, on the other to the extension of formal language theory to finite graphs. Consequently the book will be of interest to graduate students and researchers in graph theory, finite model theory, formal language theory, and complexity theory.
Topology in Chemistry
Author: D H Rouvray
Publisher: Elsevier
ISBN: 0857099612
Category : Science
Languages : en
Pages : 400
Book Description
This volume addresses a number of topological themes of direct relevance to chemists. Topological concepts are now regularly applied in wide areas of chemistry including molecular engineering and design, chemical toxicology, the study of molecular shape, crystal and surface structures, chemical bonding, macromolecular species such as polymers and DNA, and environmental chemistry. Currently, the design and synthesis of new drugs and agrochemicals are of especial importance. The book's prime focus is on the role played by topological indices in the description and characterisation of molecular species. The Wiener index along with a variety of other major topological indices, are discussed with particular reference to the powerful and much used connectivity indices. In this book an international team of leading experts review their respective fields and present their findings.The considerable benefits offered by topological indices in the investigation of chemical problems in science, medicine, and industry are highlighted. The volume records proceedings of the Harry Wiener Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001, and serves as a fitting tribute to the chemical contributions of the late Harry Wiener. - Focuses on the role played by topological indices in the description and characterisation of molecular species - Records the proceedings of the Harry Weiner Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001 - Along with a variety of other major topological indices, the Wiener index is discussed with particular reference to the powerful and much-used connectivity indices
Publisher: Elsevier
ISBN: 0857099612
Category : Science
Languages : en
Pages : 400
Book Description
This volume addresses a number of topological themes of direct relevance to chemists. Topological concepts are now regularly applied in wide areas of chemistry including molecular engineering and design, chemical toxicology, the study of molecular shape, crystal and surface structures, chemical bonding, macromolecular species such as polymers and DNA, and environmental chemistry. Currently, the design and synthesis of new drugs and agrochemicals are of especial importance. The book's prime focus is on the role played by topological indices in the description and characterisation of molecular species. The Wiener index along with a variety of other major topological indices, are discussed with particular reference to the powerful and much used connectivity indices. In this book an international team of leading experts review their respective fields and present their findings.The considerable benefits offered by topological indices in the investigation of chemical problems in science, medicine, and industry are highlighted. The volume records proceedings of the Harry Wiener Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001, and serves as a fitting tribute to the chemical contributions of the late Harry Wiener. - Focuses on the role played by topological indices in the description and characterisation of molecular species - Records the proceedings of the Harry Weiner Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001 - Along with a variety of other major topological indices, the Wiener index is discussed with particular reference to the powerful and much-used connectivity indices
Topics in Structural Graph Theory
Author: Lowell W. Beineke
Publisher: Cambridge University Press
ISBN: 1107244307
Category : Mathematics
Languages : en
Pages : 346
Book Description
The rapidly expanding area of structural graph theory uses ideas of connectivity to explore various aspects of graph theory and vice versa. It has links with other areas of mathematics, such as design theory and is increasingly used in such areas as computer networks where connectivity algorithms are an important feature. Although other books cover parts of this material, none has a similarly wide scope. Ortrud R. Oellermann (Winnipeg), internationally recognised for her substantial contributions to structural graph theory, acted as academic consultant for this volume, helping shape its coverage of key topics. The result is a collection of thirteen expository chapters, each written by acknowledged experts. These contributions have been carefully edited to enhance readability and to standardise the chapter structure, terminology and notation throughout. An introductory chapter details the background material in graph theory and network flows and each chapter concludes with an extensive list of references.
Publisher: Cambridge University Press
ISBN: 1107244307
Category : Mathematics
Languages : en
Pages : 346
Book Description
The rapidly expanding area of structural graph theory uses ideas of connectivity to explore various aspects of graph theory and vice versa. It has links with other areas of mathematics, such as design theory and is increasingly used in such areas as computer networks where connectivity algorithms are an important feature. Although other books cover parts of this material, none has a similarly wide scope. Ortrud R. Oellermann (Winnipeg), internationally recognised for her substantial contributions to structural graph theory, acted as academic consultant for this volume, helping shape its coverage of key topics. The result is a collection of thirteen expository chapters, each written by acknowledged experts. These contributions have been carefully edited to enhance readability and to standardise the chapter structure, terminology and notation throughout. An introductory chapter details the background material in graph theory and network flows and each chapter concludes with an extensive list of references.