Author: C. T. J. Dodson
Publisher: Cambridge University Press
ISBN: 1316601951
Category : Mathematics
Languages : en
Pages : 315
Book Description
A new approach to studying Fréchet geometry using projective limits of geometrical objects modelled on Banach spaces.
Geometry in a Fréchet Context
Author: C. T. J. Dodson
Publisher: Cambridge University Press
ISBN: 1316601951
Category : Mathematics
Languages : en
Pages : 315
Book Description
A new approach to studying Fréchet geometry using projective limits of geometrical objects modelled on Banach spaces.
Publisher: Cambridge University Press
ISBN: 1316601951
Category : Mathematics
Languages : en
Pages : 315
Book Description
A new approach to studying Fréchet geometry using projective limits of geometrical objects modelled on Banach spaces.
Topological Methods in Group Theory
Author: N. Broaddus
Publisher: Cambridge University Press
ISBN: 1108530508
Category : Mathematics
Languages : en
Pages : 211
Book Description
This volume collects the proceedings of the conference 'Topological methods in group theory', held at Ohio State University in 2014 in honor of Ross Geoghegan's 70th birthday. It consists of eleven peer-reviewed papers on some of the most recent developments at the interface of topology and geometric group theory. The authors have given particular attention to clear exposition, making this volume especially useful for graduate students and for mathematicians in other areas interested in gaining a taste of this rich and active field. A wide cross-section of topics in geometric group theory and topology are represented, including left-orderable groups, groups defined by automata, connectivity properties and Σ-invariants of groups, amenability and non-amenability problems, and boundaries of certain groups. Also included are topics that are more geometric or topological in nature, such as the geometry of simplices, decomposition complexity of certain groups, and problems in shape theory.
Publisher: Cambridge University Press
ISBN: 1108530508
Category : Mathematics
Languages : en
Pages : 211
Book Description
This volume collects the proceedings of the conference 'Topological methods in group theory', held at Ohio State University in 2014 in honor of Ross Geoghegan's 70th birthday. It consists of eleven peer-reviewed papers on some of the most recent developments at the interface of topology and geometric group theory. The authors have given particular attention to clear exposition, making this volume especially useful for graduate students and for mathematicians in other areas interested in gaining a taste of this rich and active field. A wide cross-section of topics in geometric group theory and topology are represented, including left-orderable groups, groups defined by automata, connectivity properties and Σ-invariants of groups, amenability and non-amenability problems, and boundaries of certain groups. Also included are topics that are more geometric or topological in nature, such as the geometry of simplices, decomposition complexity of certain groups, and problems in shape theory.
Equivariant Topology and Derived Algebra
Author: Scott Balchin
Publisher: Cambridge University Press
ISBN: 1108950671
Category : Mathematics
Languages : en
Pages : 358
Book Description
This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.
Publisher: Cambridge University Press
ISBN: 1108950671
Category : Mathematics
Languages : en
Pages : 358
Book Description
This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.
Direct and Projective Limits of Geometric Banach Structures.
Author: Patrick Cabau
Publisher: CRC Press
ISBN: 1000965988
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book describes in detail the basic context of the Banach setting and the most important Lie structures found in finite dimension. The authors expose these concepts in the convenient framework which is a common context for projective and direct limits of Banach structures. The book presents sufficient conditions under which these structures exist by passing to such limits. In fact, such limits appear naturally in many mathematical and physical domains. Many examples in various fields illustrate the different concepts introduced. Many geometric structures, existing in the Banach setting, are "stable" by passing to projective and direct limits with adequate conditions. The convenient framework is used as a common context for such types of limits. The contents of this book can be considered as an introduction to differential geometry in infinite dimension but also a way for new research topics. This book allows the intended audience to understand the extension to the Banach framework of various topics in finite dimensional differential geometry and, moreover, the properties preserved by passing to projective and direct limits of such structures as a tool in different fields of research.
Publisher: CRC Press
ISBN: 1000965988
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book describes in detail the basic context of the Banach setting and the most important Lie structures found in finite dimension. The authors expose these concepts in the convenient framework which is a common context for projective and direct limits of Banach structures. The book presents sufficient conditions under which these structures exist by passing to such limits. In fact, such limits appear naturally in many mathematical and physical domains. Many examples in various fields illustrate the different concepts introduced. Many geometric structures, existing in the Banach setting, are "stable" by passing to projective and direct limits with adequate conditions. The convenient framework is used as a common context for such types of limits. The contents of this book can be considered as an introduction to differential geometry in infinite dimension but also a way for new research topics. This book allows the intended audience to understand the extension to the Banach framework of various topics in finite dimensional differential geometry and, moreover, the properties preserved by passing to projective and direct limits of such structures as a tool in different fields of research.
Zeta and L-Functions of Varieties and Motives
Author: Bruno Kahn
Publisher: Cambridge University Press
ISBN: 1108574912
Category : Mathematics
Languages : en
Pages : 217
Book Description
The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.
Publisher: Cambridge University Press
ISBN: 1108574912
Category : Mathematics
Languages : en
Pages : 217
Book Description
The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.
The Logical Approach to Automatic Sequences
Author: Jeffrey Shallit
Publisher: Cambridge University Press
ISBN: 1108786979
Category : Computers
Languages : en
Pages : 376
Book Description
Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
Publisher: Cambridge University Press
ISBN: 1108786979
Category : Computers
Languages : en
Pages : 376
Book Description
Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
Maurer–Cartan Methods in Deformation Theory
Author: Vladimir Dotsenko
Publisher: Cambridge University Press
ISBN: 1108965644
Category : Mathematics
Languages : en
Pages : 187
Book Description
Covering an exceptional range of topics, this text provides a unique overview of the Maurer-Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory.
Publisher: Cambridge University Press
ISBN: 1108965644
Category : Mathematics
Languages : en
Pages : 187
Book Description
Covering an exceptional range of topics, this text provides a unique overview of the Maurer-Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory.
Surveys in Combinatorics 2024
Author: Felix Fischer
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306
Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306
Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.
Algebraic Combinatorics and the Monster Group
Author: Alexander A. Ivanov
Publisher: Cambridge University Press
ISBN: 1009338048
Category : Mathematics
Languages : en
Pages : 583
Book Description
The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.
Publisher: Cambridge University Press
ISBN: 1009338048
Category : Mathematics
Languages : en
Pages : 583
Book Description
The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.
New Directions in Locally Compact Groups
Author: Pierre-Emmanuel Caprace
Publisher: Cambridge University Press
ISBN: 1108349544
Category : Mathematics
Languages : en
Pages : 367
Book Description
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.
Publisher: Cambridge University Press
ISBN: 1108349544
Category : Mathematics
Languages : en
Pages : 367
Book Description
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.