Geometry and Topology in Music

Geometry and Topology in Music PDF Author: Moreno Andreatta
Publisher: CRC Press
ISBN: 1040156703
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification. Contributions address topics of voice leading, Tonnetze (maps of notes and chords), and automatic music classification. Focusing on some geometrical and topological aspects of the representation and formalisation of musical structures and processes, the book covers topological features of voice-leading geometries in the most recent advances in this mathematical approach to representing how chords are connected through the motion of voices, leading to analytically useful simplified models of high-dimensional spaces; It generalizes the idea of a Tonnetz, a geometrical map of tones or chords, and shows how topological aspects of these maps can correspond to many concepts from music theory. The resulting framework embeds the chord maps of neo-Riemannian theory in continuous spaces that relate chords of different sizes and includes extensions of this approach to rhythm theory. It further introduces an application of topology to automatic music classification, drawing upon both static topological representations and time-series evolution, showing how static and dynamic features of music interact as features of musical style. This volume will be a key resource for academics, researchers, and advanced students of music, music analyses, music composition, mathematical music theory, computational musicology, and music informatics. It was originally published as a special issue of the Journal of Mathematics and Music.

Geometry and Topology in Music

Geometry and Topology in Music PDF Author: Moreno Andreatta
Publisher: CRC Press
ISBN: 1040156703
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification. Contributions address topics of voice leading, Tonnetze (maps of notes and chords), and automatic music classification. Focusing on some geometrical and topological aspects of the representation and formalisation of musical structures and processes, the book covers topological features of voice-leading geometries in the most recent advances in this mathematical approach to representing how chords are connected through the motion of voices, leading to analytically useful simplified models of high-dimensional spaces; It generalizes the idea of a Tonnetz, a geometrical map of tones or chords, and shows how topological aspects of these maps can correspond to many concepts from music theory. The resulting framework embeds the chord maps of neo-Riemannian theory in continuous spaces that relate chords of different sizes and includes extensions of this approach to rhythm theory. It further introduces an application of topology to automatic music classification, drawing upon both static topological representations and time-series evolution, showing how static and dynamic features of music interact as features of musical style. This volume will be a key resource for academics, researchers, and advanced students of music, music analyses, music composition, mathematical music theory, computational musicology, and music informatics. It was originally published as a special issue of the Journal of Mathematics and Music.

A Geometry of Music

A Geometry of Music PDF Author: Dmitri Tymoczko
Publisher: OUP USA
ISBN: 0195336674
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
In this groundbreaking book, Tymoczko uses contemporary geometry to provide a new framework for thinking about music, one that emphasizes the commonalities among styles from Medieval polyphony to contemporary jazz.

Topology and Geometry

Topology and Geometry PDF Author: Glen E. Bredon
Publisher: Springer Science & Business Media
ISBN: 0387979263
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond PDF Author: Vicente Muñoz
Publisher: American Mathematical Soc.
ISBN: 1470461323
Category : Education
Languages : en
Pages : 408

Get Book Here

Book Description
This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

The Topos of Music

The Topos of Music PDF Author: Guerino Mazzola
Publisher: Birkhäuser
ISBN: 303488141X
Category : Mathematics
Languages : en
Pages : 1310

Get Book Here

Book Description
With contributions by numerous experts

The Topos of Music I: Theory

The Topos of Music I: Theory PDF Author: Guerino Mazzola
Publisher: Springer
ISBN: 3319643649
Category : Mathematics
Languages : en
Pages : 675

Get Book Here

Book Description
This is the first volume of the second edition of the now classic book “The Topos of Music”. The author explains the theory's conceptual framework of denotators and forms, the classification of local and global musical objects, the mathematical models of harmony and counterpoint, and topologies for rhythm and motives.

Mathematical Music Theory

Mathematical Music Theory PDF Author:
Publisher:
ISBN: 9789813235304
Category :
Languages : en
Pages :

Get Book Here

Book Description


Topology and Geometry for Physicists

Topology and Geometry for Physicists PDF Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.

The Geometry and Topology of Coxeter Groups

The Geometry and Topology of Coxeter Groups PDF Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Differential Geometry and Topology

Differential Geometry and Topology PDF Author: Keith Burns
Publisher: CRC Press
ISBN: 9781584882534
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.