Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272
Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Projective Geometry
Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272
Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Publisher: Cambridge University Press
ISBN: 9780521483643
Category : Mathematics
Languages : en
Pages : 272
Book Description
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Handbook of Finite Translation Planes
Author: Norman Johnson
Publisher: CRC Press
ISBN: 1420011146
Category : Mathematics
Languages : en
Pages : 884
Book Description
The Handbook of Finite Translation Planes provides a comprehensive listing of all translation planes derived from a fundamental construction technique, an explanation of the classes of translation planes using both descriptions and construction methods, and thorough sketches of the major relevant theorems. From the methods of Andre to coordi
Publisher: CRC Press
ISBN: 1420011146
Category : Mathematics
Languages : en
Pages : 884
Book Description
The Handbook of Finite Translation Planes provides a comprehensive listing of all translation planes derived from a fundamental construction technique, an explanation of the classes of translation planes using both descriptions and construction methods, and thorough sketches of the major relevant theorems. From the methods of Andre to coordi
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 866
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 866
Book Description
University of California Union Catalog of Monographs Cataloged by the Nine Campuses from 1963 Through 1967: Authors & titles
Author: University of California (System). Institute of Library Research
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 950
Book Description
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 950
Book Description
7000-7999, Social sciences, 8000-8999, Natural sciences; 9000-9999, Technology
Author: Princeton University. Library
Publisher:
ISBN:
Category : Classified catalogs
Languages : en
Pages : 698
Book Description
Publisher:
ISBN:
Category : Classified catalogs
Languages : en
Pages : 698
Book Description
Dictionary Catalog of the Research Libraries of the New York Public Library, 1911-1971
Author: New York Public Library. Research Libraries
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 584
Book Description
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 584
Book Description
Sci-tech Book Profiles
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1208
Book Description
Includes title page, table of contents, list of contributors, preface and all indexes of each book.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1208
Book Description
Includes title page, table of contents, list of contributors, preface and all indexes of each book.
Multiple View Geometry in Computer Vision
Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676
Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676
Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.
Classified List ...
Author: Princeton University. Library
Publisher:
ISBN:
Category : Catalogs, Classified
Languages : en
Pages : 692
Book Description
Publisher:
ISBN:
Category : Catalogs, Classified
Languages : en
Pages : 692
Book Description
Oriented Projective Geometry
Author: Jorge Stolfi
Publisher: Academic Press
ISBN: 1483265196
Category : Mathematics
Languages : en
Pages : 246
Book Description
Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.
Publisher: Academic Press
ISBN: 1483265196
Category : Mathematics
Languages : en
Pages : 246
Book Description
Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.