Geometric Transformations

Geometric Transformations PDF Author: Răzvan Gelca
Publisher: Springer Nature
ISBN: 3030891178
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
This textbook teaches the transformations of plane Euclidean geometry through problems, offering a transformation-based perspective on problems that have appeared in recent years at mathematics competitions around the globe, as well as on some classical examples and theorems. It is based on the combined teaching experience of the authors (coaches of several Mathematical Olympiad teams in Brazil, Romania and the USA) and presents comprehensive theoretical discussions of isometries, homotheties and spiral similarities, and inversions, all illustrated by examples and followed by myriad problems left for the reader to solve. These problems were carefully selected and arranged to introduce students to the topics by gradually moving from basic to expert level. Most of them have appeared in competitions such as Mathematical Olympiads or in mathematical journals aimed at an audience interested in mathematics competitions, while some are fundamental facts of mathematics discussed in the framework of geometric transformations. The book offers a global view of the geometric content of today's mathematics competitions, bringing many new methods and ideas to the attention of the public. Talented high school and middle school students seeking to improve their problem-solving skills can benefit from this book, as well as high school and college instructors who want to add nonstandard questions to their courses. People who enjoy solving elementary math problems as a hobby will also enjoy this work.

Geometric Transformations

Geometric Transformations PDF Author: Răzvan Gelca
Publisher: Springer Nature
ISBN: 3030891178
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
This textbook teaches the transformations of plane Euclidean geometry through problems, offering a transformation-based perspective on problems that have appeared in recent years at mathematics competitions around the globe, as well as on some classical examples and theorems. It is based on the combined teaching experience of the authors (coaches of several Mathematical Olympiad teams in Brazil, Romania and the USA) and presents comprehensive theoretical discussions of isometries, homotheties and spiral similarities, and inversions, all illustrated by examples and followed by myriad problems left for the reader to solve. These problems were carefully selected and arranged to introduce students to the topics by gradually moving from basic to expert level. Most of them have appeared in competitions such as Mathematical Olympiads or in mathematical journals aimed at an audience interested in mathematics competitions, while some are fundamental facts of mathematics discussed in the framework of geometric transformations. The book offers a global view of the geometric content of today's mathematics competitions, bringing many new methods and ideas to the attention of the public. Talented high school and middle school students seeking to improve their problem-solving skills can benefit from this book, as well as high school and college instructors who want to add nonstandard questions to their courses. People who enjoy solving elementary math problems as a hobby will also enjoy this work.

Geometric transformations

Geometric transformations PDF Author: Issak Moiseevich Yaglom
Publisher:
ISBN: 9780883856000
Category :
Languages : en
Pages :

Get Book Here

Book Description


Transformation Geometry

Transformation Geometry PDF Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461256801
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.

Geometric Transformations for 3D Modeling

Geometric Transformations for 3D Modeling PDF Author: Michael E. Mortenson
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 376

Get Book Here

Book Description
Written from a mathematical standpoint accessible to students, teachers, and professionals studying or practicing in engineering, mathematics, or physics, the new second edition is a comprehensive introduction to the theory and application of transformations. Presenting the more abstract foundation material in the first three chapters, Geometric Transformations in 3D Modeling reduces the clutter of theoretical derivation and development in the remainder of the text and introduces the operational and more application-oriented tools and concepts as the need arises. It assumes the reader has already taken analytic geometry and first-year calculus and has a working knowledge of basic matrix and vector algebra. This self-contained resource is sure to appeal to those working in 3D modeling, geometric modeling, computer graphics, animation, robotics, and kinematics. Features Explores and develops the subject in much greater breadth and depth than other books, offering readers a better understanding of transformation theory, the role of invariants, the uses of various notation systems, and the relations between transformations. Describes how geometric objects may change position, orientation, or even shape when subjected to mathematical operations, while properties characterizing their geometric identity and integrity remain unchanged. Presents eigenvalues, eigenvectors, and tensors in a way that makes it easier for readers to understand. Contains revised and improved figures, with many in color to highlight important features. Provides exercises throughout nearly all of the chapters whose answers are found at the end of the book.

Euclidean Geometry and Transformations

Euclidean Geometry and Transformations PDF Author: Clayton W. Dodge
Publisher: Courier Corporation
ISBN: 0486138429
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.

Geometric Transformations

Geometric Transformations PDF Author: Isaak Moiseevich I︠A︡glom
Publisher:
ISBN:
Category : Transformations (Mathematics)
Languages : en
Pages : 206

Get Book Here

Book Description


Geometries and Transformations

Geometries and Transformations PDF Author: Norman W. Johnson
Publisher: Cambridge University Press
ISBN: 1107103401
Category : Mathematics
Languages : en
Pages : 455

Get Book Here

Book Description
A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.

Linear Algebra, Geometry and Transformation

Linear Algebra, Geometry and Transformation PDF Author: Bruce Solomon
Publisher: CRC Press
ISBN: 1482299305
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
The Essentials of a First Linear Algebra Course and MoreLinear Algebra, Geometry and Transformation provides students with a solid geometric grasp of linear transformations. It stresses the linear case of the inverse function and rank theorems and gives a careful geometric treatment of the spectral theorem.An Engaging Treatment of the Interplay amo

Geometric Algebra

Geometric Algebra PDF Author: Emil Artin
Publisher: Courier Dover Publications
ISBN: 048680920X
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.

Transformation Groups in Differential Geometry

Transformation Groups in Differential Geometry PDF Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.