Handbook of Geometric Topology

Handbook of Geometric Topology PDF Author: R.B. Sher
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145

Get Book Here

Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.

Handbook of Geometric Topology

Handbook of Geometric Topology PDF Author: R.B. Sher
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145

Get Book Here

Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.

Geometric Topology and Shape Theory

Geometric Topology and Shape Theory PDF Author: Sibe Mardesic
Publisher: Springer
ISBN: 3540479759
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

Shape Theory and Geometric Topology

Shape Theory and Geometric Topology PDF Author: S. Mardesic
Publisher: Springer
ISBN: 3540387498
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description


Geometric Topology and Shape Theory

Geometric Topology and Shape Theory PDF Author: Sibe Mardešić
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

Shape and Shape Theory

Shape and Shape Theory PDF Author: D. G. Kendall
Publisher: John Wiley & Sons
ISBN: 0470317841
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Shape and Shape Theory D. G. Kendall Churchill College, University of Cambridge, UK D. Barden Girton College, University of Cambridge, UK T. K. Carne King's College, University of Cambridge, UK H. Le University of Nottingham, UK The statistical theory of shape is a relatively new topic and is generating a great deal of interest and comment by statisticians, engineers and computer scientists. Mathematically, 'shape' is the geometrical information required to describe an object when location, scale and rotational effects are removed. The theory was pioneered by Professor David Kendall to solve practical problems concerning shape. This text presents an elegant account of the theory of shape that has evolved from Kendall's work. Features include: * A comprehensive account of Kendall's shape spaces * A variety of topological and geometric invariants of these spaces * Emphasis on the mathematical aspects of shape analysis * Coverage of the mathematical issues for a wide range of applications The early chapters provide all the necessary background information, including the history and applications of shape theory. The authors then go on to analyse the topic, in brilliant detail, in a variety of different shape spaces. Kendall's own procedures for visualising distributions of shapes and shape processes are covered at length. Implications from other branches of mathematics are explored, along with more advanced applications, incorporating statistics and stochastic analysis. Applied statisticians, applied mathematicians, engineers and computer scientists working and researching in the fields of archaeology, astronomy, biology, geography and physical chemistry will find this book of great benefit. The theories presented are used today in a wide range of subjects from archaeology through to physics, and will provide fascinating reading to anyone engaged in such research. Visit our web page! http://www.wiley.com/

Geometric and Topological Inference

Geometric and Topological Inference PDF Author: Jean-Daniel Boissonnat
Publisher: Cambridge University Press
ISBN: 1108419399
Category : Computers
Languages : en
Pages : 247

Get Book Here

Book Description
A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.

Geometric Topology and Set Theory

Geometric Topology and Set Theory PDF Author:
Publisher:
ISBN:
Category : Set theory
Languages : en
Pages : 292

Get Book Here

Book Description


Knots, Molecules, and the Universe

Knots, Molecules, and the Universe PDF Author: Erica Flapan
Publisher: American Mathematical Soc.
ISBN: 1470425351
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.

Topology of Surfaces

Topology of Surfaces PDF Author: L.Christine Kinsey
Publisher: Springer Science & Business Media
ISBN: 9780387941028
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

Topology and Geometry for Physicists

Topology and Geometry for Physicists PDF Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.