Geometric Singular Perturbation Theory Beyond the Standard Form

Geometric Singular Perturbation Theory Beyond the Standard Form PDF Author: Martin Wechselberger
Publisher: Springer Nature
ISBN: 3030363996
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT). It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.

Geometric Singular Perturbation Theory Beyond the Standard Form

Geometric Singular Perturbation Theory Beyond the Standard Form PDF Author: Martin Wechselberger
Publisher: Springer Nature
ISBN: 3030363996
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT). It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.

Canard Cycles

Canard Cycles PDF Author: Peter De Maesschalck
Publisher: Springer Nature
ISBN: 3030792331
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh–Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.

Mexican Mathematicians in the World

Mexican Mathematicians in the World PDF Author: Fernando Galaz-García
Publisher: American Mathematical Society
ISBN: 1470465361
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Articles in this volume are based on presentations given at the IV Meeting of Mexican Mathematicians Abroad (IV Reunión de Matemáticos Mexicanos en el Mundo), held from June 10–15, 2018, at Casa Matemática Oaxaca (CMO), Mexico. This meeting was the fourth in a series of ongoing biannual meetings bringing together Mexican mathematicians working abroad with their peers in Mexico. This book features surveys and research articles from five broad research areas: algebra, analysis, combinatorics, geometry, and topology. Their topics range from general relativity and mathematical physics to interactions between logic and ergodic theory. Several articles provide a panoramic view of the fields and problems on which the authors are currently working on, showcasing diverse research lines complementary to those currently pursued in Mexico. The research-oriented manuscripts provide either alternative approaches to well-known problems or new advances in active research fields.

Multiplicity of Time Scales in Complex Systems

Multiplicity of Time Scales in Complex Systems PDF Author: Bernhelm Booss
Publisher: Springer Nature
ISBN: 3031451058
Category : System theory
Languages : en
Pages : 514

Get Book Here

Book Description
Zusammenfassung: This highly interdisciplinary volume brings together a carefully curated set of case studies examining complex systems with multiple time scales (MTS) across a variety of fields: materials science, epidemiology, cell physiology, mathematics, climatology, energy transition planning, ecology, economics, sociology, history, and cultural studies. The book addresses the vast diversity of interacting processes underlying the behaviour of different complex systems, highlighting the multiplicity of characteristic time scales that are a common feature of many and showcases a rich variety of methodologies across disciplinary boundaries. Self-organizing, out-of-equilibrium, ever-evolving systems are ubiquitous in the natural and social world. Examples include the climate, ecosystems, living cells, epidemics, the human brain, and many socio-economic systems across history. Their dynamical behaviour poses great challenges in the pressing context of the climate crisis, since they may involve nonlinearities, feedback loops, and the emergence of spatial-temporal patterns, portrayed by resilience or instability, plasticity or rigidity; bifurcations, thresholds and tipping points; burst-in excitation or slow relaxation, and worlds of other asymptotic behaviour, hysteresis, and resistance to change. Chapters can be read individually by the reader with special interest in such behaviours of particular complex systems or in specific disciplinary perspectives. Read together, however, the case studies, opinion pieces, and meta-studies on MTS systems presented and analysed here combine to give the reader insights that are more than the sum of the book's individual chapters, as surprising similarities become apparent in seemingly disparate and unconnected systems. MTS systems call into question naïve perceptions of time and complexity, moving beyond conventional ways of description, analysis, understanding, modelling, numerical prediction, and prescription of the world around us. This edited collection presents new ways of forecasting, introduces new means of control, and - perhaps as the most demanding task - it singles out a sustainable description of an MTS system under observation, offering a more nuanced interpretation of the floods of quantitative data and images made available by high- and low-frequency measurement tools in our unprecedented era of information flows

Neurodynamics

Neurodynamics PDF Author: Stephen Coombes
Publisher: Springer Nature
ISBN: 3031219163
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
This book is about the dynamics of neural systems and should be suitable for those with a background in mathematics, physics, or engineering who want to see how their knowledge and skill sets can be applied in a neurobiological context. No prior knowledge of neuroscience is assumed, nor is advanced understanding of all aspects of applied mathematics! Rather, models and methods are introduced in the context of a typical neural phenomenon and a narrative developed that will allow the reader to test their understanding by tackling a set of mathematical problems at the end of each chapter. The emphasis is on mathematical- as opposed to computational-neuroscience, though stresses calculation above theorem and proof. The book presents necessary mathematical material in a digestible and compact form when required for specific topics. The book has nine chapters, progressing from the cell to the tissue, and an extensive set of references. It includes Markov chain models for ions, differential equations for single neuron models, idealised phenomenological models, phase oscillator networks, spiking networks, and integro-differential equations for large scale brain activity, with delays and stochasticity thrown in for good measure. One common methodological element that arises throughout the book is the use of techniques from nonsmooth dynamical systems to form tractable models and make explicit progress in calculating solutions for rhythmic neural behaviour, synchrony, waves, patterns, and their stability. This book was written for those with an interest in applied mathematics seeking to expand their horizons to cover the dynamics of neural systems. It is suitable for a Masters level course or for postgraduate researchers starting in the field of mathematical neuroscience.

Supersymmetry and String Theory

Supersymmetry and String Theory PDF Author: Michael Dine
Publisher: Cambridge University Press
ISBN: 113946244X
Category : Science
Languages : en
Pages : 481

Get Book Here

Book Description
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.

Perturbation theory for linear operators

Perturbation theory for linear operators PDF Author: Tosio Kato
Publisher: Springer Science & Business Media
ISBN: 3662126788
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description


Strings and Geometry

Strings and Geometry PDF Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821837153
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Singular Perturbation Methods in Control

Singular Perturbation Methods in Control PDF Author: Petar Kokotovic
Publisher: SIAM
ISBN: 9781611971118
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: J Hogan
Publisher: CRC Press
ISBN: 1420033832
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys