Author: Mircea Puta
Publisher: Springer Science & Business Media
ISBN: 9401119929
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.
Hamiltonian Mechanical Systems and Geometric Quantization
Author: Mircea Puta
Publisher: Springer Science & Business Media
ISBN: 9401119929
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.
Publisher: Springer Science & Business Media
ISBN: 9401119929
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.
Geometric Control of Mechanical Systems
Author: Francesco Bullo
Publisher: Springer
ISBN: 1489972765
Category : Science
Languages : en
Pages : 741
Book Description
The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.
Publisher: Springer
ISBN: 1489972765
Category : Science
Languages : en
Pages : 741
Book Description
The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.
Geometric Quantization in Action
Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9789027714268
Category : Mathematics
Languages : en
Pages : 362
Book Description
Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.
Publisher: Springer Science & Business Media
ISBN: 9789027714268
Category : Mathematics
Languages : en
Pages : 362
Book Description
Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.
Geometric Phases in Classical and Quantum Mechanics
Author: Dariusz Chruscinski
Publisher: Springer Science & Business Media
ISBN: 0817681760
Category : Mathematics
Languages : en
Pages : 346
Book Description
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Publisher: Springer Science & Business Media
ISBN: 0817681760
Category : Mathematics
Languages : en
Pages : 346
Book Description
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Geometric Mechanics and Symmetry
Author: Darryl D. Holm
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Geometric Mechanics and Its Applications
Author: Weipeng Hu
Publisher: Springer Nature
ISBN: 9811974357
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
Publisher: Springer Nature
ISBN: 9811974357
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
Dynamical Systems and Geometric Mechanics
Author: Jared Maruskin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110597802
Category : Science
Languages : en
Pages : 350
Book Description
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110597802
Category : Science
Languages : en
Pages : 350
Book Description
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Geometric Mechanics - Part I: Dynamics And Symmetry (2nd Edition)
Author: Darryl D Holm
Publisher: World Scientific Publishing Company
ISBN: 1911298658
Category : Mathematics
Languages : en
Pages : 466
Book Description
See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a
Publisher: World Scientific Publishing Company
ISBN: 1911298658
Category : Mathematics
Languages : en
Pages : 466
Book Description
See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a
Geometric Control Theory
Author: Velimir Jurdjevic
Publisher: Cambridge University Press
ISBN: 0521495024
Category : Mathematics
Languages : en
Pages : 516
Book Description
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
Publisher: Cambridge University Press
ISBN: 0521495024
Category : Mathematics
Languages : en
Pages : 516
Book Description
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
An Introduction to Riemannian Geometry
Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476
Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476
Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.