Geometric Aspects of Probability Theory and Mathematical Statistics

Geometric Aspects of Probability Theory and Mathematical Statistics PDF Author: V.V. Buldygin
Publisher: Springer Science & Business Media
ISBN: 9401716870
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.

Geometric Aspects of Probability Theory and Mathematical Statistics

Geometric Aspects of Probability Theory and Mathematical Statistics PDF Author: V.V. Buldygin
Publisher: Springer Science & Business Media
ISBN: 9401716870
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.

Geometric Aspects of Probability Theory and Mathematical Statistics

Geometric Aspects of Probability Theory and Mathematical Statistics PDF Author: V. V. Buldygin
Publisher:
ISBN: 9789401716888
Category :
Languages : en
Pages : 316

Get Book Here

Book Description


Geometric Modeling in Probability and Statistics

Geometric Modeling in Probability and Statistics PDF Author: Ovidiu Calin
Publisher: Springer
ISBN: 3319077791
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.

Probability Theory and Mathematical Statistics

Probability Theory and Mathematical Statistics PDF Author: B. Grigelionis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311231932X
Category : Mathematics
Languages : en
Pages : 752

Get Book Here

Book Description
No detailed description available for "Probability Theory and Mathematical Statistics".

Probability Theory and Mathematical Statistics

Probability Theory and Mathematical Statistics PDF Author: Ibragimoc
Publisher: CRC Press
ISBN: 9782919875146
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
First published in 1996. Routledge is an imprint of Taylor & Francis, an informa company.

Probability Theory and Mathematical Statistics. Vol. 2

Probability Theory and Mathematical Statistics. Vol. 2 PDF Author: B. Grigelionis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112319028
Category : Mathematics
Languages : en
Pages : 624

Get Book Here

Book Description
No detailed description available for "PROB. TH. MATH. ST. ( GRIGELIONIS) VOL. 2 PROC.5/1989 E-BOOK".

Introduction to Geometric Probability

Introduction to Geometric Probability PDF Author: Daniel A. Klain
Publisher: Cambridge University Press
ISBN: 9780521596541
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF Author: Marco Taboga
Publisher: Createspace Independent Publishing Platform
ISBN: 9781981369195
Category : Mathematical statistics
Languages : en
Pages : 670

Get Book Here

Book Description
The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Probability and Statistics

Probability and Statistics PDF Author: Michael J. Evans
Publisher: Macmillan
ISBN: 9780716747420
Category : Mathematics
Languages : en
Pages : 704

Get Book Here

Book Description
Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Mathematics of Chance

Mathematics of Chance PDF Author: Jirí Andel
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
Mathematics of Chance utilizes simple, real-world problems-some of which have only recently been solved-to explain fundamental probability theorems, methods, and statistical reasoning. Jirí Andel begins with a basic introduction to probability theory and its important points before moving on to more specific sections on vital aspects of probability, using both classic and modern problems. Each chapter begins with easy, realistic examples before covering the general formulations and mathematical treatments used. The reader will find ample use for a chapter devoted to matrix games and problem sets concerning waiting, probability calculations, expectation calculations, and statistical methods. A special chapter utilizes problems that relate to areas of mathematics outside of statistics and considers certain mathematical concepts from a probabilistic point of view. Sections and problems cover topics including: ? Random walks ? Principle of reflection ? Probabilistic aspects of records ? Geometric distribution ? Optimization ? The LAD method, and more Knowledge of the basic elements of calculus will be sufficient in understanding most of the material presented here, and little knowledge of pure statistics is required. Jirí Andel has produced a compact reference for applied statisticians working in industry and the social and technical sciences, and a book that suits the needs of students seeking a fundamental understanding of probability theory.