Geometric and Topological Invariants of Elliptic Operators

Geometric and Topological Invariants of Elliptic Operators PDF Author: Jerome Kaminker
Publisher: American Mathematical Soc.
ISBN: 0821851128
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
This volume contains the proceedings of the AMS-IMS-SIAM Summer Research Conference on ``Geometric and Topological Invariants of Elliptic Operators,'' held in August 1988 at Bowdoin College. Some of the themes covered at the conference and appearing in the articles are: the use of more sophisticated asymptotic methods to obtain index theorems, the study of the $\eta$ invariant and analytic torsion, and index theory on open manifolds and foliated manifolds. The current state of noncommutative differential geometry, as well as operator algebraic and $K$-theoretic methods, are also presented in several the articles. This book will be useful to researchers in index theory, operator algebras, foliations, and mathematical physics. Topologists and geometers are also likely to find useful the view the book provides of recent work in this area. In addition, because of the expository nature of several of the articles, it will be useful to graduate students interested in working in these areas.

Geometric and Topological Invariants of Elliptic Operators

Geometric and Topological Invariants of Elliptic Operators PDF Author: Jerome Kaminker
Publisher: American Mathematical Soc.
ISBN: 0821851128
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
This volume contains the proceedings of the AMS-IMS-SIAM Summer Research Conference on ``Geometric and Topological Invariants of Elliptic Operators,'' held in August 1988 at Bowdoin College. Some of the themes covered at the conference and appearing in the articles are: the use of more sophisticated asymptotic methods to obtain index theorems, the study of the $\eta$ invariant and analytic torsion, and index theory on open manifolds and foliated manifolds. The current state of noncommutative differential geometry, as well as operator algebraic and $K$-theoretic methods, are also presented in several the articles. This book will be useful to researchers in index theory, operator algebras, foliations, and mathematical physics. Topologists and geometers are also likely to find useful the view the book provides of recent work in this area. In addition, because of the expository nature of several of the articles, it will be useful to graduate students interested in working in these areas.

Analysis, Geometry and Topology of Elliptic Operators

Analysis, Geometry and Topology of Elliptic Operators PDF Author: Bernhelm Booss
Publisher: World Scientific
ISBN: 9812568050
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.

Analysis, Geometry And Topology Of Elliptic Operators: Papers In Honor Of Krzysztof P Wojciechowski

Analysis, Geometry And Topology Of Elliptic Operators: Papers In Honor Of Krzysztof P Wojciechowski PDF Author: Matthias Lesch
Publisher: World Scientific
ISBN: 9814478024
Category : Mathematics
Languages : en
Pages : 553

Get Book Here

Book Description
Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.

An Invitation To Noncommutative Geometry

An Invitation To Noncommutative Geometry PDF Author: Matilde Marcolli
Publisher: World Scientific
ISBN: 9814475629
Category : Science
Languages : en
Pages : 515

Get Book Here

Book Description
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics PDF Author: Walter D. van Suijlekom
Publisher: Springer
ISBN: 9401791627
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Noncommutative Geometry and Global Analysis

Noncommutative Geometry and Global Analysis PDF Author: Henri Moscovici
Publisher: American Mathematical Soc.
ISBN: 0821849441
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
This volume represents the proceedings of the conference on Noncommutative Geometric Methods in Global Analysis, held in honor of Henri Moscovici, from June 29-July 4, 2009, in Bonn, Germany. Henri Moscovici has made a number of major contributions to noncommutative geometry, global analysis, and representation theory. This volume, which includes articles by some of the leading experts in these fields, provides a panoramic view of the interactions of noncommutative geometry with a variety of areas of mathematics. It focuses on geometry, analysis and topology of manifolds and singular spaces, index theory, group representation theory, connections of noncommutative geometry with number theory and arithmetic geometry, Hopf algebras and their cyclic cohomology.

Foliations: Dynamics, Geometry and Topology

Foliations: Dynamics, Geometry and Topology PDF Author: Masayuki Asaoka
Publisher: Springer
ISBN: 3034808712
Category : Mathematics
Languages : en
Pages : 207

Get Book Here

Book Description
This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods converging in the study of foliations. The lectures by Aziz El Kacimi Alaoui provide an introduction to Foliation Theory with emphasis on examples and transverse structures. Steven Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations: limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, Pesin Theory and hyperbolic, parabolic and elliptic types of foliations. The lectures by Masayuki Asaoka compute the leafwise cohomology of foliations given by actions of Lie groups, and apply it to describe deformation of those actions. In his lectures, Ken Richardson studies the properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will be interesting for mathematicians interested in the applications to foliations of subjects like Topology of Manifolds, Differential Geometry, Dynamics, Cohomology or Global Analysis.

Handbook of Global Analysis

Handbook of Global Analysis PDF Author: Demeter Krupka
Publisher: Elsevier
ISBN: 0080556736
Category : Mathematics
Languages : en
Pages : 1243

Get Book Here

Book Description
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

Elliptic Theory and Noncommutative Geometry

Elliptic Theory and Noncommutative Geometry PDF Author: Vladimir E. Nazaykinskiy
Publisher: Springer Science & Business Media
ISBN: 3764387750
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
This comprehensive yet concise book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. This is the first book featuring a consistent application of methods of noncommutative geometry to the index problem in the theory of nonlocal elliptic operators. To make the book self-contained, the authors have included necessary geometric material.

Vision Geometry

Vision Geometry PDF Author: Robert A. Melter
Publisher: American Mathematical Soc.
ISBN: 082185125X
Category : Computers
Languages : en
Pages : 254

Get Book Here

Book Description
Since its genesis more than thirty-five years ago, the field of computer vision has been known by various names, including pattern recognitions, image analysis, and image understanding. The central problem of computer vision is obtaining descriptive information by computer analysis of images of a scene. Together with the related fields of image processing and computer graphics, it has become an established discipline at the interface between computer science and electrical engineering. This volume contains fourteen papers presented at the AMS Special Session on Geometry Related to Computer Vision, held in Hoboken, New Jersey in Ooctober 1989. This book makes the results presented at the Special Session, which previously had been available only in the computer science literature, more widely available within the mathematical sciences community. Geometry plays a major role in computer vision since scene descriptions always involve geometrical properties of, and relations among, the objects of surfaces in the scene. The papers in this book provide a good sampling of geometric problems connected with computer vision. They deal with digital lines and curves, polygons, shape decompositions, digital connectedness and surfaces, digital metrics, and generalizations to higher-dimensional and graph-structured "spaces". Aimed at computer scientists specializing in image processing, computer vision, and pattern recognition - as well as mathematicians interested in applications to computer science - this book will provide readers with a view of how geometry is currently being applied to problems in computer vision.