Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric Group Theory
Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric and Cohomological Methods in Group Theory
Author: Martin R. Bridson
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Publisher: Cambridge University Press
ISBN: 052175724X
Category : Mathematics
Languages : en
Pages : 331
Book Description
An extended tour through a selection of the most important trends in modern geometric group theory.
Geometric and Cohomological Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277
Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
Geometric Group Theory
Author: Cornelia Druţu
Publisher: American Mathematical Soc.
ISBN: 1470411040
Category : Mathematics
Languages : en
Pages : 841
Book Description
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the first book in which geometric group theory is presented in a form accessible to advanced graduate students and young research mathematicians. It fills a big gap in the literature and will be used by researchers in geometric group theory and its applications.
Publisher: American Mathematical Soc.
ISBN: 1470411040
Category : Mathematics
Languages : en
Pages : 841
Book Description
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the first book in which geometric group theory is presented in a form accessible to advanced graduate students and young research mathematicians. It fills a big gap in the literature and will be used by researchers in geometric group theory and its applications.
Geometry and Cohomology in Group Theory
Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Publisher: Cambridge University Press
ISBN: 052163556X
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume reflects the fruitful connections between group theory and topology. It contains articles on cohomology, representation theory, geometric and combinatorial group theory. Some of the world's best known figures in this very active area of mathematics have made contributions, including substantial articles from Ol'shanskii, Mikhajlovskii, Carlson, Benson, Linnell, Wilson and Grigorchuk, which will be valuable reference works for some years to come. Pure mathematicians working in the fields of algebra, topology, and their interactions, will find this book of great interest.
Topics in Cohomology of Groups
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9783540611813
Category : Mathematics
Languages : en
Pages : 236
Book Description
The book is a mostly translated reprint of a report on cohomology of groups from the 1950s and 1960s, originally written as background for the Artin-Tate notes on class field theory, following the cohomological approach. This report was first published (in French) by Benjamin. For this new English edition, the author added Tate's local duality, written up from letters which John Tate sent to Lang in 1958 - 1959. Except for this last item, which requires more substantial background in algebraic geometry and especially abelian varieties, the rest of the book is basically elementary, depending only on standard homological algebra at the level of first year graduate students.
Publisher: Springer Science & Business Media
ISBN: 9783540611813
Category : Mathematics
Languages : en
Pages : 236
Book Description
The book is a mostly translated reprint of a report on cohomology of groups from the 1950s and 1960s, originally written as background for the Artin-Tate notes on class field theory, following the cohomological approach. This report was first published (in French) by Benjamin. For this new English edition, the author added Tate's local duality, written up from letters which John Tate sent to Lang in 1958 - 1959. Except for this last item, which requires more substantial background in algebraic geometry and especially abelian varieties, the rest of the book is basically elementary, depending only on standard homological algebra at the level of first year graduate students.
Group Cohomology and Algebraic Cycles
Author: Burt Totaro
Publisher: Cambridge University Press
ISBN: 1107015774
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.
Publisher: Cambridge University Press
ISBN: 1107015774
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.
The Geometry and Topology of Coxeter Groups
Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Profinite Groups, Arithmetic, and Geometry. (AM-67), Volume 67
Author: Stephen S. Shatz
Publisher: Princeton University Press
ISBN: 1400881854
Category : Mathematics
Languages : en
Pages : 264
Book Description
In this volume, the author covers profinite groups and their cohomology, Galois cohomology, and local class field theory, and concludes with a treatment of duality. His objective is to present effectively that body of material upon which all modern research in Diophantine geometry and higher arithmetic is based, and to do so in a manner that emphasizes the many interesting lines of inquiry leading from these foundations.
Publisher: Princeton University Press
ISBN: 1400881854
Category : Mathematics
Languages : en
Pages : 264
Book Description
In this volume, the author covers profinite groups and their cohomology, Galois cohomology, and local class field theory, and concludes with a treatment of duality. His objective is to present effectively that body of material upon which all modern research in Diophantine geometry and higher arithmetic is based, and to do so in a manner that emphasizes the many interesting lines of inquiry leading from these foundations.
Cohomology of Finite Groups
Author: Alejandro Adem
Publisher: Springer Science & Business Media
ISBN: 3662062828
Category : Mathematics
Languages : en
Pages : 333
Book Description
The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.
Publisher: Springer Science & Business Media
ISBN: 3662062828
Category : Mathematics
Languages : en
Pages : 333
Book Description
The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.