Geomechanical Review of Hydraulic Fracturing Technology

Geomechanical Review of Hydraulic Fracturing Technology PDF Author: Julius Bankong Arop
Publisher:
ISBN:
Category :
Languages : en
Pages : 291

Get Book Here

Book Description
Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The heterogeneous nature of shale has made hydraulic fracturing design to be unique for particular site conditions. Actual methods of carrying out fracturing operations and design decisions are also different for various companies in the industry. Hence, there are no standards for decisions in processes such as: formation testing, fracture modeling, choice of fracturing fluid or propping agent selection. This has led to different interpretations of pressure tests and proprietary fracture designs that have not been evaluated for adequacy against any recognized scale. The goal of this thesis is to do an appraisal of hydraulic fracturing in theory and practice. A review is done of the early theoretical work upon which most of the current hydraulic fracturing literature is based. Effort is also made to thoroughly cover the core aspects of fracture modeling and practical operations with a view to shedding light on the strength and drawbacks of current methodologies. The thesis focuses on the geo-mechanics of the process thus less emphasis is laid on post fracturing operations. It is hoped that this will help establish the basis for a standard framework to guide fracturing design. Finally, the ambiguity of nomenclature in oil and gas circles has led to considerable confusion in conducting academic work. For this reason, effort was made in the thesis to clearly define the various terminology.

Geomechanical Review of Hydraulic Fracturing Technology

Geomechanical Review of Hydraulic Fracturing Technology PDF Author: Julius Bankong Arop
Publisher:
ISBN:
Category :
Languages : en
Pages : 291

Get Book Here

Book Description
Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The heterogeneous nature of shale has made hydraulic fracturing design to be unique for particular site conditions. Actual methods of carrying out fracturing operations and design decisions are also different for various companies in the industry. Hence, there are no standards for decisions in processes such as: formation testing, fracture modeling, choice of fracturing fluid or propping agent selection. This has led to different interpretations of pressure tests and proprietary fracture designs that have not been evaluated for adequacy against any recognized scale. The goal of this thesis is to do an appraisal of hydraulic fracturing in theory and practice. A review is done of the early theoretical work upon which most of the current hydraulic fracturing literature is based. Effort is also made to thoroughly cover the core aspects of fracture modeling and practical operations with a view to shedding light on the strength and drawbacks of current methodologies. The thesis focuses on the geo-mechanics of the process thus less emphasis is laid on post fracturing operations. It is hoped that this will help establish the basis for a standard framework to guide fracturing design. Finally, the ambiguity of nomenclature in oil and gas circles has led to considerable confusion in conducting academic work. For this reason, effort was made in the thesis to clearly define the various terminology.

Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Geomechanics and Hydraulic Fracturing for Shale Reservoirs PDF Author: Yu Wang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618968963
Category : Art
Languages : en
Pages : 383

Get Book Here

Book Description
This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495

Get Book Here

Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book Here

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Applied Petroleum Geomechanics

Applied Petroleum Geomechanics PDF Author: Jon Jincai Zhang
Publisher: Gulf Professional Publishing
ISBN: 0128148152
Category : Science
Languages : en
Pages : 534

Get Book Here

Book Description
Applied Petroleum Geomechanics provides a bridge between theory and practice as a daily use reference that contains direct industry applications. Going beyond the basic fundamentals of rock properties, this guide covers critical field and lab tests, along with interpretations from actual drilling operations and worldwide case studies, including abnormal formation pressures from many major petroleum basins. Rounding out with borehole stability solutions and the geomechanics surrounding hydraulic fracturing and unconventional reservoirs, this comprehensive resource gives petroleum engineers a much-needed guide on how to tackle today’s advanced oil and gas operations. Presents methods in formation evaluation and the most recent advancements in the area, including tools, techniques and success stories Bridges the gap between theory of rock mechanics and practical oil and gas applications Helps readers understand pore pressure calculations and predictions that are critical to shale and hydraulic activity

Microseismic Imaging of Hydraulic Fracturing

Microseismic Imaging of Hydraulic Fracturing PDF Author: Shawn Mawell
Publisher: SEG Books
ISBN: 1560803150
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description
Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs (SEG Distinguished Instructor Series No. 17) covers the use of microseismic data to enhance engineering design of hydraulic fracturing and well completion. The book, which accompanies the 2014 SEG Distinguished Instructor Short Course, describes the design, acquisition, processing, and interpretation of an effective microseismic project. The text includes a tutorial of the basics of hydraulic fracturing, including the geologic and geomechanical factors that control fracture growth. In addition to practical issues associated with collecting and interpreting microseismic data, potential pitfalls and quality-control steps are discussed. Actual case studies are used to demonstrate engineering benefits and improved production through the use of microseismic monitoring. Providing a practical user guide for survey design, quality control, interpretation, and application of microseismic hydraulic fracture monitoring, this book will be of interest to geoscientists and engineers involved in development of unconventional reservoirs.

Review of Hydraulic Fracturing Technology and Practices

Review of Hydraulic Fracturing Technology and Practices PDF Author: United States. Congress. House. Committee on Science, Space, and Technology (2011)
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 160

Get Book Here

Book Description


Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Author: Xinpu Shen
Publisher: CRC Press
ISBN: 1351796283
Category : Science
Languages : en
Pages : 259

Get Book Here

Book Description
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Review of Geochemical and Geo-Mechanical Impact of Clay-Fluid Interactions Relevant to Hydraulic Fracturing

Review of Geochemical and Geo-Mechanical Impact of Clay-Fluid Interactions Relevant to Hydraulic Fracturing PDF Author: Mileva Radonjic
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
Shale rocks are an integral part of petroleum systems. Though, originally viewed primarily as source and seal rocks, introduction of horizontal drilling and hydraulic fracturing technologies have essentially redefined the role of shale rocks in unconventional reservoirs. In the geological setting, the deposition, formation and transformation of sedimentary rocks are characterised by interactions between their clay components and formation fluids at subsurface elevated temperatures and pressures. The main driving forces in evolution of any sedimentary rock formation are geochemistry (chemistry of solids and fluids) and geomechanics (earth stresses). During oil and gas production, clay minerals are exposed to engineered fluids, which initiate further reactions with significant implications. Application of hydraulic fracturing in shale formations also means exposure and reaction between shale clay minerals and hydraulic fracturing fluids. This chapter presents an overview of currently available published literature on interactions between formation clay minerals and fluids in the subsurface. The overview is particularly focused on the geochemical and geomechanical impacts of interactions between formation clays and hydraulic fracturing fluids, with the goal to identify knowledge gaps and new research questions on the subject.

Review of Hydraulic Fracturing Technology and Practices

Review of Hydraulic Fracturing Technology and Practices PDF Author: Space, and Technology, Committee on Science, Space, and Technology House of Representatives
Publisher:
ISBN: 9781478358411
Category :
Languages : en
Pages : 158

Get Book Here

Book Description
The primary focus of today's hearing is our study on hydraulic fracturing, and hydraulic fracturing, so far as I understand it, or fracking, is the process by which water, sand, and a small amount of additives are pumped into a well to create enough pressure to fracture formations deep within the earth. That is pretty simple, but that is what they wrote out for me to say here. Advances in this 60-year-old technology, combined with horizontal drilling, have transformed the production of natural gas along with the natural gas industry. Access to shale gas that was until recently uneconomical and technically unrecoverable is driving state and local economic growth all around the country with providing new sources of domestic energy to meet growing demand. As with all energy development, deep gas drilling is not without risk and concerns about potential environmental effects. This has to be examined.