Author: Bill D. Black
Publisher: Utah Geological Survey
ISBN: 1557916330
Category : Geology
Languages : en
Pages : 75
Book Description
The petrographic database consists of 705 maceral analyses, reflectance measurements, and density and porosity determinations from Utah coal samples. These data were collected by the Utah Geological Survey from 1982 to 1995. Samples were collected from seven of Utah's 22 coal fields. Coal fields sampled are the Book Cliffs (182 samples), Wasatch Plateau (262 samples), Emery (41 samples), Sego (27 samples), Henry Mountains (173 samples), Kaiparowits Plateau (12 samples), and Coalville (four samples). The data are sorted by coal-field names; within each field the analyses are arranged alphabetically by coal-bed name to facilitate comparison. The aim of the database is to provide the industry with information on petrographic properties of Utah coals. In addition, it should help the coal operators and purchasers to determine the best uses for Utah coals.
Geology and Geologic Hazards of Tooele Valley and the West Desert Hazardous Industry Area, Tooele County, Utah
Author: Bill D. Black
Publisher: Utah Geological Survey
ISBN: 1557916330
Category : Geology
Languages : en
Pages : 75
Book Description
The petrographic database consists of 705 maceral analyses, reflectance measurements, and density and porosity determinations from Utah coal samples. These data were collected by the Utah Geological Survey from 1982 to 1995. Samples were collected from seven of Utah's 22 coal fields. Coal fields sampled are the Book Cliffs (182 samples), Wasatch Plateau (262 samples), Emery (41 samples), Sego (27 samples), Henry Mountains (173 samples), Kaiparowits Plateau (12 samples), and Coalville (four samples). The data are sorted by coal-field names; within each field the analyses are arranged alphabetically by coal-bed name to facilitate comparison. The aim of the database is to provide the industry with information on petrographic properties of Utah coals. In addition, it should help the coal operators and purchasers to determine the best uses for Utah coals.
Publisher: Utah Geological Survey
ISBN: 1557916330
Category : Geology
Languages : en
Pages : 75
Book Description
The petrographic database consists of 705 maceral analyses, reflectance measurements, and density and porosity determinations from Utah coal samples. These data were collected by the Utah Geological Survey from 1982 to 1995. Samples were collected from seven of Utah's 22 coal fields. Coal fields sampled are the Book Cliffs (182 samples), Wasatch Plateau (262 samples), Emery (41 samples), Sego (27 samples), Henry Mountains (173 samples), Kaiparowits Plateau (12 samples), and Coalville (four samples). The data are sorted by coal-field names; within each field the analyses are arranged alphabetically by coal-bed name to facilitate comparison. The aim of the database is to provide the industry with information on petrographic properties of Utah coals. In addition, it should help the coal operators and purchasers to determine the best uses for Utah coals.
Radon-hazard Potential of the Lower Weber River Area, Tooele Valley, and Southeastern Cache Valley, Cache, Davis, Tooele, and Weber Counties, Utah
Author: Bill D. Black
Publisher: Utah Geological Survey
ISBN: 155791379X
Category : Geology, Structural
Languages : en
Pages : 62
Book Description
Radon is a radioactive gas of geologic origin that is an environmental concern because of its link to lung cancer. Radon is derived from the decay of uranium, and can accumulate indoors in sufficient quantities to pose a health hazard to building occupants. Although the influence of non-geologic factors such as construction type, lifestyle, and weather is difficult to measure, geologic factors that influence indoor-radon levels can be quantified to assess the hazard potential. Geologic factors that influence indoor-radon levels have been studied for three areas in northern Utah to indicate where indoor radon may be a hazard and radon-resistant techniques should be considered in new construction. The three areas include the lower Weber River area in Davis and Weber Counties, Tooele Valley in Tooele County, and southeastern Cache Valley in Cache County. These areas all lie in the depositional basin of Pleistocene Lake Bonneville, and display common geologic characteristics which affect their potential for radon hazards. A numerical rating system was used to assess and map the relative radon-hazard potential in the three study areas. A high-hazard potential was typically found along range fronts where uranium concentrations are higher, ground water is deep, and soils are permeable. Although soil-gas and indoor-radon concentrations broadly correlate to mapped hazard potential, the correlation is imperfect because of atmospheric contamination of soil-gas samples, the presence of locally anomalous concentrations of radon which are beyond the resolution of the sampling grid or map scale, and the effects of non-geologic factors which are not considered in this geologic assessment. 56 pages + 1 plate
Publisher: Utah Geological Survey
ISBN: 155791379X
Category : Geology, Structural
Languages : en
Pages : 62
Book Description
Radon is a radioactive gas of geologic origin that is an environmental concern because of its link to lung cancer. Radon is derived from the decay of uranium, and can accumulate indoors in sufficient quantities to pose a health hazard to building occupants. Although the influence of non-geologic factors such as construction type, lifestyle, and weather is difficult to measure, geologic factors that influence indoor-radon levels can be quantified to assess the hazard potential. Geologic factors that influence indoor-radon levels have been studied for three areas in northern Utah to indicate where indoor radon may be a hazard and radon-resistant techniques should be considered in new construction. The three areas include the lower Weber River area in Davis and Weber Counties, Tooele Valley in Tooele County, and southeastern Cache Valley in Cache County. These areas all lie in the depositional basin of Pleistocene Lake Bonneville, and display common geologic characteristics which affect their potential for radon hazards. A numerical rating system was used to assess and map the relative radon-hazard potential in the three study areas. A high-hazard potential was typically found along range fronts where uranium concentrations are higher, ground water is deep, and soils are permeable. Although soil-gas and indoor-radon concentrations broadly correlate to mapped hazard potential, the correlation is imperfect because of atmospheric contamination of soil-gas samples, the presence of locally anomalous concentrations of radon which are beyond the resolution of the sampling grid or map scale, and the effects of non-geologic factors which are not considered in this geologic assessment. 56 pages + 1 plate
Homebuyers Guide to Earthquake Hazards in Utah
Author: Sandra N. Eldredge
Publisher: Utah Geological Survey
ISBN: 1557913862
Category : Technology & Engineering
Languages : en
Pages : 32
Book Description
Large, damaging earthquakes can happen in many parts of Utah. Therefore, when choosing where to live in this state, we should be aware of the earthquake risk. It is important to know what potential earthquake hazards exist in an area, and what action we can take to reduce the earthquake risk to ourselves and our families. This brochure introduces homebuyers and others to earthquake hazards so that informed choices can be made when selecting homes, building sites, or hazard-reduction measures.
Publisher: Utah Geological Survey
ISBN: 1557913862
Category : Technology & Engineering
Languages : en
Pages : 32
Book Description
Large, damaging earthquakes can happen in many parts of Utah. Therefore, when choosing where to live in this state, we should be aware of the earthquake risk. It is important to know what potential earthquake hazards exist in an area, and what action we can take to reduce the earthquake risk to ourselves and our families. This brochure introduces homebuyers and others to earthquake hazards so that informed choices can be made when selecting homes, building sites, or hazard-reduction measures.
Special Study
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 224
Book Description
Activities Associated with Future Programs at U.S. Army Dugway Proving Ground
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 898
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 898
Book Description
Miscellaneous Publication
Author: Utah Geological Survey
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 496
Book Description
Report of Investigation
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 492
Book Description
Environmental and Engineering Geology of the Wasatch Front Region
Author: Utah Geological Association. Field Conference
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 582
Book Description
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 582
Book Description
Survey Notes
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 174
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 174
Book Description
Public Information Series
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 34
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 34
Book Description