Author: Shabir Hussain Wani
Publisher: Springer
ISBN: 3030207285
Category : Science
Languages : en
Pages : 314
Book Description
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
Disease Resistance in Crop Plants
Author: Shabir Hussain Wani
Publisher: Springer
ISBN: 3030207285
Category : Science
Languages : en
Pages : 314
Book Description
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
Publisher: Springer
ISBN: 3030207285
Category : Science
Languages : en
Pages : 314
Book Description
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
Plant Molecular Evolution
Author: J.J. Doyle
Publisher: Springer Science & Business Media
ISBN: 9401142211
Category : Science
Languages : en
Pages : 272
Book Description
Plant molecular biology has produced an ever-increasing flood of data about genes and genomes. Evolutionary biology and systematics provides the context for synthesizing this information. This book brings together contributions from evolutionary biologists, systematists, developmental geneticists, biochemists, and others working on diverse aspects of plant biology whose work touches to varying degrees on plant molecular evolution. The book is organized in three parts, the first of which introduces broad topics in evolutionary biology and summarizes advances in plant molecular phylogenetics, with emphasis on model plant systems. The second segment presents a series of case studies of gene family evolution, while the third gives overviews of the evolution of important plant processes such as disease resistance, nodulation, hybridization, transposable elements and genome evolution, and polyploidy.
Publisher: Springer Science & Business Media
ISBN: 9401142211
Category : Science
Languages : en
Pages : 272
Book Description
Plant molecular biology has produced an ever-increasing flood of data about genes and genomes. Evolutionary biology and systematics provides the context for synthesizing this information. This book brings together contributions from evolutionary biologists, systematists, developmental geneticists, biochemists, and others working on diverse aspects of plant biology whose work touches to varying degrees on plant molecular evolution. The book is organized in three parts, the first of which introduces broad topics in evolutionary biology and summarizes advances in plant molecular phylogenetics, with emphasis on model plant systems. The second segment presents a series of case studies of gene family evolution, while the third gives overviews of the evolution of important plant processes such as disease resistance, nodulation, hybridization, transposable elements and genome evolution, and polyploidy.
Mechanisms of Resistance to Plant Diseases
Author: R.S. Fraser
Publisher: Springer Science & Business Media
ISBN: 9400951450
Category : Science
Languages : en
Pages : 473
Book Description
Plant resistance to pathogens is one of the most important strategies of disease control. Knowledge of resistance mechanisms, and of how to exploit them, has made a significant contribution to agricultural productivity. However, the continuous evolution of new variants of pathogen, ana additional control problems posed by new crops and agricultural methods, creates a need for a corresponding increase in our understanding of resistance and ability to utilize it. The study of resistance mechanisms also has attractions from a purely academic point of view. First there is the breadth of the problem, which can be approached at the genetical, molecular, cellular, whole plant or population lev~ls. Often there is the possibility of productive exchange of ideas between different disciplines. Then there is the fact that despite recent advances, many of the mechanisms involved have still to be fully elucidated. Finally, and compared with workers in other areas of biology, the student of resistance is twice blessed in having as his subject the interaction of two or more organisms, with the intriguing problems of recognition, specificity and co-evolution which this raises.
Publisher: Springer Science & Business Media
ISBN: 9400951450
Category : Science
Languages : en
Pages : 473
Book Description
Plant resistance to pathogens is one of the most important strategies of disease control. Knowledge of resistance mechanisms, and of how to exploit them, has made a significant contribution to agricultural productivity. However, the continuous evolution of new variants of pathogen, ana additional control problems posed by new crops and agricultural methods, creates a need for a corresponding increase in our understanding of resistance and ability to utilize it. The study of resistance mechanisms also has attractions from a purely academic point of view. First there is the breadth of the problem, which can be approached at the genetical, molecular, cellular, whole plant or population lev~ls. Often there is the possibility of productive exchange of ideas between different disciplines. Then there is the fact that despite recent advances, many of the mechanisms involved have still to be fully elucidated. Finally, and compared with workers in other areas of biology, the student of resistance is twice blessed in having as his subject the interaction of two or more organisms, with the intriguing problems of recognition, specificity and co-evolution which this raises.
Evolution and Functional Mechanisms of Plant Disease Resistance
Author: Zhu-Qing Shao
Publisher: Frontiers Media SA
ISBN: 2889661997
Category : Science
Languages : en
Pages : 197
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Publisher: Frontiers Media SA
ISBN: 2889661997
Category : Science
Languages : en
Pages : 197
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Handbook of Maize: Its Biology
Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
ISBN: 0387794182
Category : Science
Languages : en
Pages : 593
Book Description
Handbook of Maize: Its Biology centers on the past, present and future of maize as a model for plant science research and crop improvement. The book includes brief, focused chapters from the foremost maize experts and features a succinct collection of informative images representing the maize germplasm collection.
Publisher: Springer Science & Business Media
ISBN: 0387794182
Category : Science
Languages : en
Pages : 593
Book Description
Handbook of Maize: Its Biology centers on the past, present and future of maize as a model for plant science research and crop improvement. The book includes brief, focused chapters from the foremost maize experts and features a succinct collection of informative images representing the maize germplasm collection.
Rice
Author: Wengui Yan
Publisher: BoD – Books on Demand
ISBN: 9535112406
Category : Medical
Languages : en
Pages : 320
Book Description
Rice is a staple food for half of the worlds population mostly in Asia. Productivity of rice has largely been improved since the Green Revolution in 1960s. Further improvement of rice yield is necessary to keep pace with population growth, which is a challenging task for breeders. This book, Rice - Germplasm, Genetics and Improvement, as its name implies, comprehensively reviews current knowledge in germplasm exploration, genetic basis of complex traits, and molecular breeding strategies in rice. In the germplasm part, we highlight the application of wild rice in rice breeding. In the genetics part, most of the complex traits related with yield, disease, quality have been covered. In the improvement part, Chinese experiences in hybrid rice breeding have been summarized together with many molecular breeding practices scattering in different chapters.
Publisher: BoD – Books on Demand
ISBN: 9535112406
Category : Medical
Languages : en
Pages : 320
Book Description
Rice is a staple food for half of the worlds population mostly in Asia. Productivity of rice has largely been improved since the Green Revolution in 1960s. Further improvement of rice yield is necessary to keep pace with population growth, which is a challenging task for breeders. This book, Rice - Germplasm, Genetics and Improvement, as its name implies, comprehensively reviews current knowledge in germplasm exploration, genetic basis of complex traits, and molecular breeding strategies in rice. In the germplasm part, we highlight the application of wild rice in rice breeding. In the genetics part, most of the complex traits related with yield, disease, quality have been covered. In the improvement part, Chinese experiences in hybrid rice breeding have been summarized together with many molecular breeding practices scattering in different chapters.
Genetics and Evolution of Infectious Diseases
Author: Michel Tibayrenc
Publisher: Elsevier
ISBN: 0443288194
Category : Medical
Languages : en
Pages : 1002
Book Description
Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters
Publisher: Elsevier
ISBN: 0443288194
Category : Medical
Languages : en
Pages : 1002
Book Description
Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters
Protecting Rice Grains in the Post-Genomic Era
Author: Yulin Jia
Publisher: BoD – Books on Demand
ISBN: 1789843871
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book focuses on recent advances in genetic resources, host - pathogen interactions, assay methods, mechanisms of pathogenesis, and disease resistance. Environmentally benign crop protection methods for major rice diseases such as rice blast, sheath blight, bacterial blight, and newly emerged rice diseases such as false smut and bacterial panicle blight disease are included. The content also contains recent rice breeding methods for higher yield and improved disease resistance, rice processing, delicious rice recipes, and food safety. The book includes a comprehensive understanding of Bacillus thuringiensis toxin and its application for crop protection. Holistically, the book demonstrates successful applications of genomics, physiology, chemistry, genetics, pathology, soil science, and food technology to sustainably protect rice crops for global food safety.
Publisher: BoD – Books on Demand
ISBN: 1789843871
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book focuses on recent advances in genetic resources, host - pathogen interactions, assay methods, mechanisms of pathogenesis, and disease resistance. Environmentally benign crop protection methods for major rice diseases such as rice blast, sheath blight, bacterial blight, and newly emerged rice diseases such as false smut and bacterial panicle blight disease are included. The content also contains recent rice breeding methods for higher yield and improved disease resistance, rice processing, delicious rice recipes, and food safety. The book includes a comprehensive understanding of Bacillus thuringiensis toxin and its application for crop protection. Holistically, the book demonstrates successful applications of genomics, physiology, chemistry, genetics, pathology, soil science, and food technology to sustainably protect rice crops for global food safety.
Breeding for Disease Resistance in Farm Animals
Author: Stephen C. Bishop
Publisher: CABI
ISBN: 1845935551
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Addressing principles associated with breeding animals for enhanced health and resistance to specific diseases, this book provides a review of the field illustrated with examples covering many diseases of importance to livestock production, across all major livestock species. Authored by experts in the field, this updated edition covers techniques and approaches, viruses, TSEs, bacteria, parasites, vectors, and broader health issues seen in production systems, including metabolic diseases. The book will be an essential reference for professionals in the field, scientists and researchers, students, breeders, veterinarians, agricultural advisors and policy makers.
Publisher: CABI
ISBN: 1845935551
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Addressing principles associated with breeding animals for enhanced health and resistance to specific diseases, this book provides a review of the field illustrated with examples covering many diseases of importance to livestock production, across all major livestock species. Authored by experts in the field, this updated edition covers techniques and approaches, viruses, TSEs, bacteria, parasites, vectors, and broader health issues seen in production systems, including metabolic diseases. The book will be an essential reference for professionals in the field, scientists and researchers, students, breeders, veterinarians, agricultural advisors and policy makers.
Molecular Plant Pathology
Author: Sarah Jane Gurr
Publisher:
ISBN: 9781383047974
Category :
Languages : en
Pages : 0
Book Description
The first of a 2-volume set which provides a comprehensive handbook for the applications of molecular as well as classical techniques to plant pathology. Detailed protocols are included which address a range of investigations, from plant pathogen isolation to localizing genes and their products.
Publisher:
ISBN: 9781383047974
Category :
Languages : en
Pages : 0
Book Description
The first of a 2-volume set which provides a comprehensive handbook for the applications of molecular as well as classical techniques to plant pathology. Detailed protocols are included which address a range of investigations, from plant pathogen isolation to localizing genes and their products.