Generation of Titanium Oxide Nanostructures Via Electron Beam Induced Deposition in UHV

Generation of Titanium Oxide Nanostructures Via Electron Beam Induced Deposition in UHV PDF Author: Michael Schirmer
Publisher:
ISBN:
Category :
Languages : en
Pages : 363

Get Book Here

Book Description

Generation of Titanium Oxide Nanostructures Via Electron Beam Induced Deposition in UHV

Generation of Titanium Oxide Nanostructures Via Electron Beam Induced Deposition in UHV PDF Author: Michael Schirmer
Publisher:
ISBN:
Category :
Languages : en
Pages : 363

Get Book Here

Book Description


Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition and in Situ Characterization of Nanoscale Titanium Dioxide Films

Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition and in Situ Characterization of Nanoscale Titanium Dioxide Films PDF Author: Polly Wanda Chu
Publisher:
ISBN:
Category :
Languages : en
Pages : 434

Get Book Here

Book Description
Thin titanium dioxide films were produced by metalorganic chemical vapor deposition on sapphire(0001) in an ultrahigh vacuum (UHV) chamber. A method was developed for producing controlled submonolayer depositions from titanium isopropoxide precursor. Film thickness ranged from 0.1 to 2.7 nm. In situ X-ray photoelectron spectroscopy (XPS) was used to determine film stoichiometry with increasing thickness. The effect of isothermal annealing on desorption was evaluated. Photoelectron peak shapes and positions from the initial monolayers were analyzed for evidence of interface reaction. Deposition from titanium isopropoxide is divided into two regimes: depositions below and above the pyrolysis temperature. This temperature was determined to be 300 deg C. Controlled submonolayers of titanium oxide were produced by cycles of dosing with titanium isopropoxide vapor below and annealing above 300 deg C. Precursor adsorption below the pyrolysis temperature was observed to saturate after 15 minutes of dosing. The quantity absorbed was shown to have an upper limit of one monolayer. The stoichiometry of thin films grown by the cycling method were determined to be TiO2. Titanium dioxide film stoichiometry was unaffected by isothermal annealing at 700 deg C. Annealing produced a decrease in film thickness. This was explained as due to desorption. Desorption ceased at approximately 2.5 to 3 monolayers, suggesting bonding of the initial monolayers of film to sapphire is stronger than to itself. Evidence of sapphire reduction at the interface by the depositions was not observed. The XPS O is peak shifted with increased film thickness. The shifts were consistent with oxygen in sapphire and titanium dioxide having different O is photoelectron peak positions. Simulations showed the total shifts for thin films ranging in thickness of 0.1 to 2.7 nm to be -0.99 to -1.23 eV. Thick films were produced for comparison.

Electron Beam Induced Deposition of Rhodium Nanostructures

Electron Beam Induced Deposition of Rhodium Nanostructures PDF Author: Fabio Cicoira
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description


The Chemistry of Metal CVD

The Chemistry of Metal CVD PDF Author: Toivo T. Kodas
Publisher: John Wiley & Sons
ISBN: 3527615849
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
High purity, thin metal coatings have a variety of important commercial applications, for example, in the microelectronics industry, as catalysts, as protective and decorative coatings as well as in gas-diffusion barriers. This book offers detailed, up- to-date coverage of the chemistry behind the vapor deposition of different metals from organometallic precursors. In nine chapters, the CVD of metals including aluminum, tungsten, gold, silver, platinum, palladium, nickel, as well as copper from copper(I) and copper(II) compounds is covered. The synthesis and properties of the precursors, the growth process, morphology, quality and adhesion of the resulting films as well as laser- assisted, ion- assisted and plasma-assisted methods are discussed. Present applications and prospects for future developments are summarized. With ca. 1000 references and a glossary, this book is a unique source of in-depth information. It is indispensable for chemists, physicists, engineers and materials scientists working with metal- coating processes and technologies. From Reviews: 'I highly recommend this book to anyone interested in learning more about the chemistry of metal CVD.' J. Am Chem. Soc.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2626

Get Book Here

Book Description


Hierarchical Nanostructures for Energy Devices

Hierarchical Nanostructures for Energy Devices PDF Author: Seung H Ko
Publisher: Royal Society of Chemistry
ISBN: 1849737509
Category : Science
Languages : en
Pages : 323

Get Book Here

Book Description
Surface area has a directly relationship with the efficiency of energy devices. Hierarchical nanostructuring has the potential to greatly increase surface area, and their electrical properties are favourable, not only to energy generation and storage, but also energy-consuming electronic circuits. This book provides systematic coverage of how nanostructured materials can be applied to energy devices, with an emphasis on the process of generation to storage and consumption. The fundamentals (including properties, characterisation and synthesis) are clearly presented across the first chapters of the book, providing readers new to the field with a clear overview of this expanding topic. The detailed discussion of applications will be an inspiration to those already well-versed in the field. The editors have more than a decade of experience in working on all aspects of energy generation and storage - in academia, national laboratories and industry. The book presents a balanced view from all sectors and is presented in a format accessible by postgraduate students and professional researchers alike.

Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams PDF Author: Ivo Utke
Publisher: Oxford University Press
ISBN: 0199920990
Category : Technology & Engineering
Languages : en
Pages : 830

Get Book Here

Book Description
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization

Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization PDF Author: Richard Haight
Publisher: World Scientific
ISBN: 9814322849
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.

Ceramic Abstracts

Ceramic Abstracts PDF Author: American Ceramic Society
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 1150

Get Book Here

Book Description


Nanostructure Science and Technology

Nanostructure Science and Technology PDF Author: Richard W. Siegel
Publisher: Springer Science & Business Media
ISBN: 9780792358541
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.