Generation and Control of Solid-state High Harmonics at the Nanoscale

Generation and Control of Solid-state High Harmonics at the Nanoscale PDF Author: Hanzhe Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-harmonic generation (HHG) lies at the heart of attosecond science. Since the first experimental observation of HHG in noble gases, extensive theoretical and experimental studies have been performed on HHG from gas phase medium including both noble gases as well as small molecues for the past 30 years, making HHG a valuable tool to probe attosecond dynamics in various physical and chemical systems. A recent new progress in this field is the observation of high harmonics in a crystalline bulk solid reported in the year of 2011. Fundamentally, high-harmonic generation from solids is a spectroscopy technique and understanding the mechanism will allow us to study the fundamental strong light-matter interaction processes happen at femto- and attosecond time scale in the condensed matter phase. In terms of application, observation of high-harmonics in solids such as semiconductors makes it possible to engineer and control the ultrafast strong light-matter interaction at nanoscales by patterning the solids target with subwavelength nanostructures, which could eventually lead to novel compact ultrafast photonic devices operating at extremely short wavelengths. In this thesis, we report a few experiments that reveal the fundamental mechanism responsible for solid-state high-harmonic generation as well as the control of the process at subwavelength scale by applying nanofabrication technology. The first experiment is an optical pump-probe study on HHG from a ZnO bulk crystal. The behavior of the high-harmonics signal generated from a strong probe pulse under a direct band gap linear excitation suggests that a Rabi-type of interband transition plays an important role in high-harmonic generation in solids under the experiment condition. A second experiment is the first demonstration of high-harmonic generation in a two-dimensional material (in this case, monolayer MoS$_{2}$). Based on the measured high-harmonic spectra we suggest that the Berry curvature of the material has important effects when electrons are strongly driven by the excitation field. We further find that the generation process is more efficient from monolayer compared to an equivalent layer in bulk, revealing hints of the correlation effects on the high-harmonic generation process. A third experiment covered in this thesis is to enhance and control high-harmonic generation from an all-dielectric metasurface. The enhancement of high harmonics is a direct result of the enhanced pump field in the metasurface when the device is resonantly excited. The overall harmonic yield from field-enhancing nanostructures is ultimately limited by the laser induced damage of the sample, and this motivates the last work in this thesis. In this work, we demonstrate the guiding of above-gap high harmonics in a slotted waveguide geometry by allowing high harmonics propagating in the vacuum channel with a greatly reduced absorption. Coherent propagation effects are observed, which is otherwise absent in bulk due to strong absorption. With the reduced absorption, we further demonstrate the enhanced high harmonics at high excitation intensities up to the damage threshold of the bulk.

Generation and Control of Solid-state High Harmonics at the Nanoscale

Generation and Control of Solid-state High Harmonics at the Nanoscale PDF Author: Hanzhe Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-harmonic generation (HHG) lies at the heart of attosecond science. Since the first experimental observation of HHG in noble gases, extensive theoretical and experimental studies have been performed on HHG from gas phase medium including both noble gases as well as small molecues for the past 30 years, making HHG a valuable tool to probe attosecond dynamics in various physical and chemical systems. A recent new progress in this field is the observation of high harmonics in a crystalline bulk solid reported in the year of 2011. Fundamentally, high-harmonic generation from solids is a spectroscopy technique and understanding the mechanism will allow us to study the fundamental strong light-matter interaction processes happen at femto- and attosecond time scale in the condensed matter phase. In terms of application, observation of high-harmonics in solids such as semiconductors makes it possible to engineer and control the ultrafast strong light-matter interaction at nanoscales by patterning the solids target with subwavelength nanostructures, which could eventually lead to novel compact ultrafast photonic devices operating at extremely short wavelengths. In this thesis, we report a few experiments that reveal the fundamental mechanism responsible for solid-state high-harmonic generation as well as the control of the process at subwavelength scale by applying nanofabrication technology. The first experiment is an optical pump-probe study on HHG from a ZnO bulk crystal. The behavior of the high-harmonics signal generated from a strong probe pulse under a direct band gap linear excitation suggests that a Rabi-type of interband transition plays an important role in high-harmonic generation in solids under the experiment condition. A second experiment is the first demonstration of high-harmonic generation in a two-dimensional material (in this case, monolayer MoS$_{2}$). Based on the measured high-harmonic spectra we suggest that the Berry curvature of the material has important effects when electrons are strongly driven by the excitation field. We further find that the generation process is more efficient from monolayer compared to an equivalent layer in bulk, revealing hints of the correlation effects on the high-harmonic generation process. A third experiment covered in this thesis is to enhance and control high-harmonic generation from an all-dielectric metasurface. The enhancement of high harmonics is a direct result of the enhanced pump field in the metasurface when the device is resonantly excited. The overall harmonic yield from field-enhancing nanostructures is ultimately limited by the laser induced damage of the sample, and this motivates the last work in this thesis. In this work, we demonstrate the guiding of above-gap high harmonics in a slotted waveguide geometry by allowing high harmonics propagating in the vacuum channel with a greatly reduced absorption. Coherent propagation effects are observed, which is otherwise absent in bulk due to strong absorption. With the reduced absorption, we further demonstrate the enhanced high harmonics at high excitation intensities up to the damage threshold of the bulk.

High-order Harmonic Generation In Solids

High-order Harmonic Generation In Solids PDF Author: Marcelo Ciappina
Publisher: World Scientific
ISBN: 9811279578
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
'High-order harmonics emerging from the interaction of strong laser fields with solid matter constitute a novel, highly sensitive tool for interrogating electronic structure and dynamics in solids. At the interface of attosecond physics and condensed matter physics, this book provides an excellent overview of the current state of the art.'Ferenc KrauszNobel Laureate in Physics, 2023High-order harmonic generation (HHG) in solids, the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with bulk matter, has come of age. Since the seminal experiments and theoretical developments, there has been a constant and vibrant interest in this topic. In this book, we invite experimental and theoretical experts in the field with the aim to summarize the progress made so far and propose new possibilities and prospects for the generation of high-order harmonics using solid samples. Nowadays, it is possible to engineer, both spatially and temporally with nanometric and attosecond resolution, the driven fields. This could bring solid HHG to the next exciting frontier as novel and fully tunable table-top coherent sources.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Solid State Properties

Solid State Properties PDF Author: Mildred Dresselhaus
Publisher: Springer
ISBN: 3662559226
Category : Science
Languages : en
Pages : 521

Get Book Here

Book Description
This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author:
Publisher: Elsevier
ISBN: 0443314594
Category : Science
Languages : en
Pages : 84

Get Book Here

Book Description
The Advances series highlights recent developments in atomic, molecular and optical physics. Readers can learn about recent advances from articles that are comprehensive in nature. These articles often contain background material and extensive references; as such they can serve as useful source material for many years to come. - The articles are written by experts in their fields - Most articles offer readers the opportunity to learn about recent advances in atomic, molecular, and optical physics. Since there are only modest restrictions on the length of the contributions, authors have the ability to develop the subject matter in a clear fashion

Strong field physics and attosecond science

Strong field physics and attosecond science PDF Author: Weifeng Yang
Publisher: Frontiers Media SA
ISBN: 2832522750
Category : Science
Languages : en
Pages : 88

Get Book Here

Book Description


Solid State Properties

Solid State Properties PDF Author: Mildred Dresselhaus
Publisher: Springer
ISBN: 9783662572559
Category : Science
Languages : en
Pages : 517

Get Book Here

Book Description
This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.

Magnetophotonics

Magnetophotonics PDF Author: Mitsuteru Inoue
Publisher: Springer Science & Business Media
ISBN: 3642355099
Category : Technology & Engineering
Languages : en
Pages : 238

Get Book Here

Book Description
This book merges theoretical and experimental works initiated in 1997 from consideration of periodical artificial dielectric structures comprising magneto-optical materials. Modern advances in magnetophotonics are discussed giving theoretical analyses and demonstrations of the consequences of light interaction with non-reciprocal media of various designs. This first collection of foundational works is devoted to light-to-artificial magnetic matter phenomena and related applications. The subject covers the physical background and the continuing research in the field of magnetophotonics.

Nonlinear Meta-Optics

Nonlinear Meta-Optics PDF Author: Costantino De Angelis
Publisher: CRC Press
ISBN: 1351269755
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.

Semiconductor Quantum Optics

Semiconductor Quantum Optics PDF Author: Mackillo Kira
Publisher: Cambridge University Press
ISBN: 1139502514
Category : Science
Languages : en
Pages : 658

Get Book Here

Book Description
The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.