Author: Wolodymyr V. Petryshyn
Publisher: Cambridge University Press
ISBN: 0521444748
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book describes many new results and extensions of the theory of generalized topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of nonlinear ordinary and partial differential equations that are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. The theory subsumes classical theory involving compact vector fields as well as the more recent theories of condensing vector-fields, strongly monotone, and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics, and physics who make use of nonlinear analysis will find this an important resource for new techniques.
Generalized Topological Degree and Semilinear Equations
Author: Wolodymyr V. Petryshyn
Publisher: Cambridge University Press
ISBN: 0521444748
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book describes many new results and extensions of the theory of generalized topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of nonlinear ordinary and partial differential equations that are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. The theory subsumes classical theory involving compact vector fields as well as the more recent theories of condensing vector-fields, strongly monotone, and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics, and physics who make use of nonlinear analysis will find this an important resource for new techniques.
Publisher: Cambridge University Press
ISBN: 0521444748
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book describes many new results and extensions of the theory of generalized topological degree for densely defined A-proper operators and presents important applications, particularly to boundary value problems of nonlinear ordinary and partial differential equations that are intractable under any other existing theory. A-proper mappings arise naturally in the solution to an equation in infinite dimensional space via the finite dimensional approximation. The theory subsumes classical theory involving compact vector fields as well as the more recent theories of condensing vector-fields, strongly monotone, and strongly accretive maps. Researchers and graduate students in mathematics, applied mathematics, and physics who make use of nonlinear analysis will find this an important resource for new techniques.
Handbook of Topological Fixed Point Theory
Author: Robert F. Brown
Publisher: Springer Science & Business Media
ISBN: 1402032226
Category : Mathematics
Languages : en
Pages : 966
Book Description
This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.
Publisher: Springer Science & Business Media
ISBN: 1402032226
Category : Mathematics
Languages : en
Pages : 966
Book Description
This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.
Topological Degree Theory and Applications
Author: Yeol Je Cho
Publisher: CRC Press
ISBN: 1420011480
Category : Mathematics
Languages : en
Pages : 228
Book Description
Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its ap
Publisher: CRC Press
ISBN: 1420011480
Category : Mathematics
Languages : en
Pages : 228
Book Description
Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its ap
Theorems of Leray-Schauder Type And Applications
Author: Radu Precup
Publisher: CRC Press
ISBN: 1420022202
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume presents a systematic and unified treatment of Leray-Schauder continuation theorems in nonlinear analysis. In particular, fixed point theory is established for many classes of maps, such as contractive, non-expansive, accretive, and compact maps, to name but a few. This book also presents coincidence and multiplicity results. Many appli
Publisher: CRC Press
ISBN: 1420022202
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume presents a systematic and unified treatment of Leray-Schauder continuation theorems in nonlinear analysis. In particular, fixed point theory is established for many classes of maps, such as contractive, non-expansive, accretive, and compact maps, to name but a few. This book also presents coincidence and multiplicity results. Many appli
Equivariant Degree Theory
Author: Jorge Ize
Publisher: Walter de Gruyter
ISBN: 3110200023
Category : Mathematics
Languages : en
Pages : 385
Book Description
This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.
Publisher: Walter de Gruyter
ISBN: 3110200023
Category : Mathematics
Languages : en
Pages : 385
Book Description
This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.
The Geometry of Total Curvature on Complete Open Surfaces
Author: Katsuhiro Shiohama
Publisher: Cambridge University Press
ISBN: 9780521450546
Category : Mathematics
Languages : en
Pages : 300
Book Description
This is a self-contained account of how some modern ideas in differential geometry can be used to tackle and extend classical results in integral geometry. The authors investigate the influence of total curvature on the metric structure of complete, non-compact Riemannian 2-manifolds, though their work, much of which has never appeared in book form before, can be extended to more general spaces. Many classical results are introduced and then extended by the authors. The compactification of complete open surfaces is discussed, as are Busemann functions for rays. Open problems are provided in each chapter, and the text is richly illustrated with figures designed to help the reader understand the subject matter and get intuitive ideas about the subject. The treatment is self-contained, assuming only a basic knowledge of manifold theory, so is suitable for graduate students and non-specialists who seek an introduction to this modern area of differential geometry.
Publisher: Cambridge University Press
ISBN: 9780521450546
Category : Mathematics
Languages : en
Pages : 300
Book Description
This is a self-contained account of how some modern ideas in differential geometry can be used to tackle and extend classical results in integral geometry. The authors investigate the influence of total curvature on the metric structure of complete, non-compact Riemannian 2-manifolds, though their work, much of which has never appeared in book form before, can be extended to more general spaces. Many classical results are introduced and then extended by the authors. The compactification of complete open surfaces is discussed, as are Busemann functions for rays. Open problems are provided in each chapter, and the text is richly illustrated with figures designed to help the reader understand the subject matter and get intuitive ideas about the subject. The treatment is self-contained, assuming only a basic knowledge of manifold theory, so is suitable for graduate students and non-specialists who seek an introduction to this modern area of differential geometry.
Algebraic Multiplicity of Eigenvalues of Linear Operators
Author: Julián López-Gómez
Publisher: Springer Science & Business Media
ISBN: 3764384018
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book brings together all available results about the theory of algebraic multiplicities. It first offers a classic course on finite-dimensional spectral theory and then presents the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families. Coverage next transfers these results from linear to nonlinear analysis.
Publisher: Springer Science & Business Media
ISBN: 3764384018
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book brings together all available results about the theory of algebraic multiplicities. It first offers a classic course on finite-dimensional spectral theory and then presents the most general results available about the existence and uniqueness of algebraic multiplicities for real non-analytic operator matrices and families. Coverage next transfers these results from linear to nonlinear analysis.
Derivation and Integration
Author: Washek F. Pfeffer
Publisher: Cambridge University Press
ISBN: 9780521792684
Category : Mathematics
Languages : en
Pages : 290
Book Description
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
Publisher: Cambridge University Press
ISBN: 9780521792684
Category : Mathematics
Languages : en
Pages : 290
Book Description
This 2001 book is devoted to an invariant multidimensional process of recovering a function from its derivative. It considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. A typical example is the flux of a continuous vector field. A very general Gauss-Green theorem follows from the sufficient conditions for the derivability of the flux. Since the setting is invariant with respect to local lipeomorphisms, a standard argument extends the Gauss-Green theorem to the Stokes theorem on Lipschitz manifolds. In addition, the author proves the Stokes theorem for a class of top-dimensional normal currents - a first step towards solving a difficult open problem of derivation and integration in middle dimensions. The book contains complete and detailed proofs and will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
Isoperimetric Inequalities
Author: Isaac Chavel
Publisher: Cambridge University Press
ISBN: 9780521802673
Category : Mathematics
Languages : en
Pages : 292
Book Description
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Publisher: Cambridge University Press
ISBN: 9780521802673
Category : Mathematics
Languages : en
Pages : 292
Book Description
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Topological Fixed Point Principles for Boundary Value Problems
Author: J. Andres
Publisher: Springer Science & Business Media
ISBN: 9401704074
Category : Mathematics
Languages : en
Pages : 771
Book Description
The book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topological fixed point theory in non-metric spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Therefore, three appendices concerning almost-periodic and derivo-periodic single-valued (multivalued) functions and (multivalued) fractals are supplied to the main three chapters.
Publisher: Springer Science & Business Media
ISBN: 9401704074
Category : Mathematics
Languages : en
Pages : 771
Book Description
The book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topological fixed point theory in non-metric spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Therefore, three appendices concerning almost-periodic and derivo-periodic single-valued (multivalued) functions and (multivalued) fractals are supplied to the main three chapters.