Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Miguel Ángel Goberna
Publisher: Springer Science & Business Media
ISBN: 1475734034
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Semi-infinite programming (SIP) deals with optimization problems in which either the number of decision variables or the number of constraints is finite. This book presents the state of the art in SIP in a suggestive way, bringing the powerful SIP tools close to the potential users in different scientific and technological fields. The volume is divided into four parts. Part I reviews the first decade of SIP (1962-1972). Part II analyses convex and generalised SIP, conic linear programming, and disjunctive programming. New numerical methods for linear, convex, and continuously differentiable SIP problems are proposed in Part III. Finally, Part IV provides an overview of the applications of SIP to probability, statistics, experimental design, robotics, optimization under uncertainty, production games, and separation problems. Audience: This book is an indispensable reference and source for advanced students and researchers in applied mathematics and engineering.

Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Miguel Ángel Goberna
Publisher: Springer Science & Business Media
ISBN: 1475734034
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Semi-infinite programming (SIP) deals with optimization problems in which either the number of decision variables or the number of constraints is finite. This book presents the state of the art in SIP in a suggestive way, bringing the powerful SIP tools close to the potential users in different scientific and technological fields. The volume is divided into four parts. Part I reviews the first decade of SIP (1962-1972). Part II analyses convex and generalised SIP, conic linear programming, and disjunctive programming. New numerical methods for linear, convex, and continuously differentiable SIP problems are proposed in Part III. Finally, Part IV provides an overview of the applications of SIP to probability, statistics, experimental design, robotics, optimization under uncertainty, production games, and separation problems. Audience: This book is an indispensable reference and source for advanced students and researchers in applied mathematics and engineering.

Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Rembert Reemtsen
Publisher: Springer Science & Business Media
ISBN: 1475728689
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.

Linear Semi-Infinite Optimization

Linear Semi-Infinite Optimization PDF Author: Miguel A. Goberna
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
A linear semi-infinite program is an optimization problem with linear objective functions and linear constraints in which either the number of unknowns or the number of constraints is finite. The many direct applications of linear semi-infinite optimization (or programming) have prompted considerable and increasing research effort in recent years. The authors' aim is to communicate the main theoretical ideas and applications techniques of this fascinating area, from the perspective of convex analysis. The four sections of the book cover: * Modelling with primal and dual problems - the primal problem, space of dual variables, the dual problem. * Linear semi-infinite systems - existence theorems, alternative theorems, redundancy phenomena, geometrical properties of the solution set. * Theory of linear semi-infinite programming - optimality, duality, boundedness, perturbations, well-posedness. * Methods of linear semi-infinite programming - an overview of the main numerical methods for primal and dual problems. Exercises and examples are provided to illustrate both theory and applications. The reader is assumed to be familiar with elementary calculus, linear algebra and general topology. An appendix on convex analysis is provided to ensure that the book is self-contained. Graduate students and researchers wishing to gain a deeper understanding of the main ideas behind the theory of linear optimization will find this book to be an essential text.

Bi-Level Strategies in Semi-Infinite Programming

Bi-Level Strategies in Semi-Infinite Programming PDF Author: Oliver Stein
Publisher: Springer Science & Business Media
ISBN: 1441991646
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming.

Optimality Conditions in Convex Optimization

Optimality Conditions in Convex Optimization PDF Author: Anulekha Dhara
Publisher: CRC Press
ISBN: 1439868220
Category : Business & Economics
Languages : en
Pages : 446

Get Book Here

Book Description
Optimality Conditions in Convex Optimization explores an important and central issue in the field of convex optimization: optimality conditions. It brings together the most important and recent results in this area that have been scattered in the literature—notably in the area of convex analysis—essential in developing many of the important results in this book, and not usually found in conventional texts. Unlike other books on convex optimization, which usually discuss algorithms along with some basic theory, the sole focus of this book is on fundamental and advanced convex optimization theory. Although many results presented in the book can also be proved in infinite dimensions, the authors focus on finite dimensions to allow for much deeper results and a better understanding of the structures involved in a convex optimization problem. They address semi-infinite optimization problems; approximate solution concepts of convex optimization problems; and some classes of non-convex problems which can be studied using the tools of convex analysis. They include examples wherever needed, provide details of major results, and discuss proofs of the main results.

Nondifferentiable and Two-Level Mathematical Programming

Nondifferentiable and Two-Level Mathematical Programming PDF Author: Kiyotaka Shimizu
Publisher: Springer Science & Business Media
ISBN: 1461563054
Category : Business & Economics
Languages : en
Pages : 482

Get Book Here

Book Description
The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications PDF Author: Jean-Bernard Lasserre
Publisher: World Scientific
ISBN: 1848164467
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources

Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry PDF Author: Grigoriy Blekherman
Publisher: SIAM
ISBN: 1611972280
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Completely Positive Matrices

Completely Positive Matrices PDF Author: Abraham Berman
Publisher: World Scientific
ISBN: 9789812795212
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."