Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Generalized Functions, Volume 5
Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Generalized Functions Theory and Technique
Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474
Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474
Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
Spaces of Fundamental and Generalized Functions
Author: I. M. Gel'Fand
Publisher: Academic Press
ISBN: 1483262308
Category : Mathematics
Languages : en
Pages : 272
Book Description
Spaces of Fundamental and Generalized Functions, Volume 2, analyzes the general theory of linear topological spaces. The basis of the theory of generalized functions is the theory of the so-called countably normed spaces (with compatible norms), their unions (inductive limits), and also of the spaces conjugate to the countably normed ones or their unions. This set of spaces is sufficiently broad on the one hand, and sufficiently convenient for the analyst on the other. The book opens with a chapter that discusses the theory of these spaces. This is followed by separate chapters on fundamental and generalized functions, Fourier transformations of fundamental and generalized functions, and spaces of type S.
Publisher: Academic Press
ISBN: 1483262308
Category : Mathematics
Languages : en
Pages : 272
Book Description
Spaces of Fundamental and Generalized Functions, Volume 2, analyzes the general theory of linear topological spaces. The basis of the theory of generalized functions is the theory of the so-called countably normed spaces (with compatible norms), their unions (inductive limits), and also of the spaces conjugate to the countably normed ones or their unions. This set of spaces is sufficiently broad on the one hand, and sufficiently convenient for the analyst on the other. The book opens with a chapter that discusses the theory of these spaces. This is followed by separate chapters on fundamental and generalized functions, Fourier transformations of fundamental and generalized functions, and spaces of type S.
Generalized Functions, Volume 6
Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426641
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying theme of Volume 6 is the study of representations of the general linear group of order two over various fields and rings of number-theoretic nature, most importantly over local fields (p-adic fields and fields of power series over finite fields) and over the ring of adeles. Representation theory of the latter group naturally leads to the study of automorphic functions and related number-theoretic problems. The book contains a wealth of information about discrete subgroups and automorphic representations, and can be used both as a very good introduction to the subject and as a valuable reference.
Publisher: American Mathematical Soc.
ISBN: 1470426641
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying theme of Volume 6 is the study of representations of the general linear group of order two over various fields and rings of number-theoretic nature, most importantly over local fields (p-adic fields and fields of power series over finite fields) and over the ring of adeles. Representation theory of the latter group naturally leads to the study of automorphic functions and related number-theoretic problems. The book contains a wealth of information about discrete subgroups and automorphic representations, and can be used both as a very good introduction to the subject and as a valuable reference.
Geometric Theory of Generalized Functions with Applications to General Relativity
Author: M. Grosser
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Generalized Functions, Volume 1
Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426587
Category : Mathematics
Languages : en
Pages : 450
Book Description
he first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 1 is devoted to basics of the theory of generalized functions. The first chapter contains main definitions and most important properties of generalized functions as functional on the space of smooth functions with compact support. The second chapter talks about the Fourier transform of generalized functions. In Chapter 3, definitions and properties of some important classes of generalized functions are discussed; in particular, generalized functions supported on submanifolds of lower dimension, generalized functions associated with quadratic forms, and homogeneous generalized functions are studied in detail. Many simple basic examples make this book an excellent place for a novice to get acquainted with the theory of generalized functions. A long appendix presents basics of generalized functions of complex variables.
Publisher: American Mathematical Soc.
ISBN: 1470426587
Category : Mathematics
Languages : en
Pages : 450
Book Description
he first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 1 is devoted to basics of the theory of generalized functions. The first chapter contains main definitions and most important properties of generalized functions as functional on the space of smooth functions with compact support. The second chapter talks about the Fourier transform of generalized functions. In Chapter 3, definitions and properties of some important classes of generalized functions are discussed; in particular, generalized functions supported on submanifolds of lower dimension, generalized functions associated with quadratic forms, and homogeneous generalized functions are studied in detail. Many simple basic examples make this book an excellent place for a novice to get acquainted with the theory of generalized functions. A long appendix presents basics of generalized functions of complex variables.
Generalized Functions, Volume 2
Author: I. M. Gel'fand
Publisher: American Mathematical Soc.
ISBN: 1470426595
Category : Mathematics
Languages : en
Pages : 274
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 2 is devoted to detailed study of generalized functions as linear functionals on appropriate spaces of smooth test functions. In Chapter 1, the authors introduce and study countable-normed linear topological spaces, laying out a general theoretical foundation for the analysis of spaces of generalized functions. The two most important classes of spaces of test functions are spaces of compactly supported functions and Schwartz spaces of rapidly decreasing functions. In Chapters 2 and 3 of the book, the authors transfer many results presented in Volume 1 to generalized functions corresponding to these more general spaces. Finally, Chapter 4 is devoted to the study of the Fourier transform; in particular, it includes appropriate versions of the Paley-Wiener theorem.
Publisher: American Mathematical Soc.
ISBN: 1470426595
Category : Mathematics
Languages : en
Pages : 274
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 2 is devoted to detailed study of generalized functions as linear functionals on appropriate spaces of smooth test functions. In Chapter 1, the authors introduce and study countable-normed linear topological spaces, laying out a general theoretical foundation for the analysis of spaces of generalized functions. The two most important classes of spaces of test functions are spaces of compactly supported functions and Schwartz spaces of rapidly decreasing functions. In Chapters 2 and 3 of the book, the authors transfer many results presented in Volume 1 to generalized functions corresponding to these more general spaces. Finally, Chapter 4 is devoted to the study of the Fourier transform; in particular, it includes appropriate versions of the Paley-Wiener theorem.
Distributions
Author: Pulin Kumar Bhattacharyya
Publisher: Walter de Gruyter
ISBN: 3110269295
Category : Mathematics
Languages : en
Pages : 871
Book Description
This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.
Publisher: Walter de Gruyter
ISBN: 3110269295
Category : Mathematics
Languages : en
Pages : 871
Book Description
This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.
Applications of Fourier Transforms to Generalized Functions
Author: M. Rahman
Publisher: WIT Press
ISBN: 1845645642
Category : Mathematics
Languages : en
Pages : 193
Book Description
The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references
Publisher: WIT Press
ISBN: 1845645642
Category : Mathematics
Languages : en
Pages : 193
Book Description
The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references
Generalized Calculus with Applications to Matter and Forces
Author: Luis Manuel Braga de Costa Campos
Publisher: CRC Press
ISBN: 1420071157
Category : Mathematics
Languages : en
Pages : 888
Book Description
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.
Publisher: CRC Press
ISBN: 1420071157
Category : Mathematics
Languages : en
Pages : 888
Book Description
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.