Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Continuum Scale Simulation of Engineering Materials

Continuum Scale Simulation of Engineering Materials PDF Author: Dierk Raabe
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885

Get Book Here

Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Dislocation Mechanism-Based Crystal Plasticity

Dislocation Mechanism-Based Crystal Plasticity PDF Author: Zhuo Zhuang
Publisher: Academic Press
ISBN: 0128145927
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications

Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications PDF Author: Eric Bayerschen
Publisher: KIT Scientific Publishing
ISBN: 3731506068
Category : Technology (General)
Languages : en
Pages : 278

Get Book Here

Book Description
In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations.

Mesoscale Models

Mesoscale Models PDF Author: Sinisa Mesarovic
Publisher: Springer
ISBN: 3319941860
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,

Generalized Continua - from the Theory to Engineering Applications

Generalized Continua - from the Theory to Engineering Applications PDF Author: Holm Altenbach
Publisher: Springer Science & Business Media
ISBN: 3709113709
Category : Technology & Engineering
Languages : en
Pages : 403

Get Book Here

Book Description
On the roots of continuum mechanics in differential geometry -- a review.- Cosserat media.- Cosserat-type shells.- Cosserat-type rods.- Micromorphic media.- Electromagnetism and generalized continua.- Computational methods for generalized continua. The need of generalized continua models is coming from practice. Complex material behavior sometimes cannot be presented by the classical Cauchy continua. At present the attention of the scientists in this field is focused on the most recent research items • new models, • application of well-known models to new problems, • micro-macro aspects, • computational effort, and • possibilities to identify the constitutive equations The new research directions are discussed in this volume - from the point of view of modeling and simulation, identification, and numerical methods.

Geometrical Foundations of Continuum Mechanics

Geometrical Foundations of Continuum Mechanics PDF Author: Paul Steinmann
Publisher: Springer
ISBN: 3662464608
Category : Science
Languages : en
Pages : 534

Get Book Here

Book Description
This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.

Gradient-Enhanced Continuum Plasticity

Gradient-Enhanced Continuum Plasticity PDF Author: George Z. Voyiadjis
Publisher: Elsevier
ISBN: 0128177675
Category : Technology & Engineering
Languages : en
Pages : 405

Get Book Here

Book Description
Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. - Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models - Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling - Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity - Describes micromechanical aspects from experimental observations

Computational Materials System Design

Computational Materials System Design PDF Author: Dongwon Shin
Publisher: Springer
ISBN: 3319682806
Category : Technology & Engineering
Languages : en
Pages : 239

Get Book Here

Book Description
This book provides state-of-the-art computational approaches for accelerating materials discovery, synthesis, and processing using thermodynamics and kinetics. The authors deliver an overview of current practical computational tools for materials design in the field. They describe ways to integrate thermodynamics and kinetics and how the two can supplement each other.

Advances in Extended and Multifield Theories for Continua

Advances in Extended and Multifield Theories for Continua PDF Author: Bernd Markert
Publisher: Springer Science & Business Media
ISBN: 3642227384
Category : Science
Languages : en
Pages : 231

Get Book Here

Book Description
Modern computational techniques, such as the Finite Element Method, have, since their development several decades ago, successfully exploited continuum theories for numerous applications in science and technology. Although standard continuum methods based upon the Cauchy-Boltzmann continuum are still of great importance and are widely used, it increasingly appears that material properties stemming from microstructural phenomena have to be considered. This is particularly true for inhomogeneous load and deformation states, where lower-scale size effects begin to affect the macroscopic material response; something standard continuum theories fail to account for. Following this idea, it is evident that standard continuum mechanics has to be augmented to capture lower-scale structural and compositional phenomena, and to make this information accessible to macroscopic numerical simulations.